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Collisions in musical string instruments play a fundamental role in explaining the sound production
in various instruments such as sitars, tanpuras, and electric basses. Contacts occurring during the
vibration provide a nonlinear effect which shapes a specific tone due to energy transfers and enriches
the hearing experience. As such, they must be carefully simulated for the purpose of physically
based sound synthesis. Most of the numerical methods presented in the literature rely on a compliant
modeling of the contact force between the string and the obstacle. In this contribution, numerical
methods from nonsmooth contact dynamics are used to integrate the problem in time. A Moreau-
Jean time-stepping scheme is combined with an exact scheme for phases with no contact, thus con-
trolling the numerical dispersion. Results for a two-point bridge mimicking a tanpura and an electric
bass are presented, showing the ability of the method to deal efficiently with such problems while
invoking, as compared to a compliant approach, less modelling parameters, and a reduced computa-
tional burden. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5039740
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I. INTRODUCTION

Collisions are of prime importance in musical acoustics
for explaining the particular timbre of a number of instru-
ments ranging from strings (a typical example being that of
Indian instruments such as sitar, tanpura, and veena) to
drums (e.g., snare drum) (Bilbao, 2012; Fletcher and
Rossing, 1998; Raman, 1921). In these examples, the role of
contacts is to alter the frequency content due to a nonlinear,
nonsmooth interaction that generates high frequencies and
contributes to enrich the hearing experience. This effect is
particularly prominent in the case of the sitar, where a
curved bridge contributes to significantly modify the fre-
quency content of the string vibration (e.g., Bilbao et al.,
2015; Mandal and Wahi, 2015; Siddiq, 2012; Vyasarayani
et al., 2009), and in the case of the tanpura and its particular
bridge (Chatziioannou and van Walstijn, 2015; Issanchou
et al., 2017; Valette et al., 1991). Other examples that
attracted interest in the recent years concern the case of
string/frets interactions (e.g., guitar or electric bass) (Bilbao
and Torin, 2015; Issanchou et al., 2018; Trautmann and

Rabenstein, 2004) and snare drum where metal wires are in
contact with a vibrating membrane (Bilbao, 2012; Bilbao
et al., 2015).

Earlier studies on vibrating strings with contacts derive
a number of analytical results, mostly in the 1980s (Amerio,
1978; Cabannes, 1987; Citrini, 1991; Schatzman, 1980). To
overcome the limitations of these approaches, where the
string needs to be perfect without stiffness, thus discarding
the dispersive effect which has been shown to be of prime
importance in the case of the sitar and tanpura
(Chatziioannou and van Walstijn, 2015; Issanchou et al.,
2017; Siddiq, 2012), recent research efforts concentrate
toward the development of efficient, robust, and accurate
numerical methods in order to simulate musical strings
encountering an obstacle during their vibration. Most of the
methods presented recently use a regularisation in order to
numerically treat the contact force, see, e.g., the energy-
conserving schemes proposed by Bilbao and co-workers
(Bilbao et al., 2015; Desvages and Bilbao, 2015; Ducceschi
et al., 2016) and by van Walstijn and co-workers
(Chatziioannou and van Walstijn, 2015; van Walstijn and
Bridges, 2016; van Walstijn et al., 2016), the modal
approach proposed in Issanchou et al. (2017), or the
approach followed in In!acio et al. (2006) to model the inter-
action between a puja (exciting stick) and a Tibetan bowl. In
all of these studies, the contact force is modeled using a
power-law method with two parameters defining the stiffness
of the repelling force, thus allowing one to cover a wide
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range of contact laws, from soft collisions, e.g., contact
between felt and hammer in piano (Boutillon, 1988),
between mallet and membrane in a kettledrum (Rhaouti
et al., 1999), or between finger and fretboard (Bilbao and
Torin, 2015), to hard contacts. In this article, we will name
the methods using a regularisation to express the repelling
force a “compliant approach.” In this framework, power
laws are often used but other functions may also be selected.
Also, the parameters defining the contact force may have a
physical basis, see Goldsmith (2001) for some examples. On
the other hand, ad hoc values may be used as numerical free
parameters, so that a penalty approach is at hand.

On the other hand, a large body of research has been
dedicated to the development of nonsmooth numerical meth-
ods in order to deal efficiently with numerical challenges
posed by contact and friction forces. These methods rely on
specific assumptions (e.g., no interpenetration is allowed
between the contacting bodies) and use mathematical tools
from the measure theory, differential inclusions, and com-
plementarity systems. The first developments have been pio-
neered by Jean and Moreau (see, e.g., Jean, 1999; Jean and
Moreau, 1987), continued by numerous investigations
(Doyen et al., 2011; Janin and Lamarque, 2001; Paoli and
Schatzman, 2002), and are now summarized in reference
books (Acary and Brogliato, 2008; Studer, 2009).
Nonsmooth methods have been successfully applied in a
variety of contexts ranging from granular media (Renouf
et al., 2004), geomaterials (Jean, 1995), multibody dynamics
(Chen et al., 2013) to realistic simulations of hair motions
and living systems (Acary et al., 2014; Bertails-Descoubes
et al., 2011). In the field of vibration, the method has been
applied to rotor/casing contacts in Meingast et al. (2014) as
well as to string vibrations in Ahn (2007), where the study
was, however, limited to the case of a perfect string without
stiffness and a frictionless contact. In the area of musical
acoustics, the action of a grand piano has been recently sim-
ulated efficiently by using a nonsmooth approach (Thorin
et al., 2017).

As remarked by a number of investigators, numerical
integration for contact dynamics is generally time-
consuming due to the high-frequency content generated
(Doyen et al., 2011; Issanchou et al., 2017), leading to the
consideration of very small time steps in order to achieve
convergence. In this context, nonsmooth numerical methods,
such as avoiding the costly step of finding the zeros of a non-
linear function with a Newton-Raphson approach and using
efficient numerical methods to solve a linear complementar-
ity problem, should decrease the computational burden
(Acary and Brogliato, 2008). From the modeling point of
view, nonsmooth methods are particularly appealing when
one only needs an efficient numerical method to repel a
vibrating structure from an obstacle with a simple represen-
tation of the dissipation phenomena at contact. As such, non-
smooth methods describe the contact law with a single
parameter, the coefficient of restitution, instead of the two
parameters used in the power-law approach as done in, e.g.,
Bilbao et al. (2015), Chatziioannou and van Walstijn (2015),
and Issanchou et al. (2017) in the conservative case, and
additional parameters to model the dissipation following a

Hunt and Crossley approach. Let us note that it is also diffi-
cult with the power-law approach to obtain large dissipation
rates at contact. For this purpose, more complicated compli-
ant models must be introduced including plasticity effects
(Nguyen and Brogliato, 2014). Less modelling parameters
could be seen as an advantage, but also as a drawback if one
prefers to have more degrees of freedom in order to represent
different contact laws with a large variety of stiffness and/or
damping to account for a physical reality having perceptual
effects. A typical example is that of the guitar where very
different parameters are used for the string/fret and finger/
fingerboard collisions (Bilbao and Torin, 2015). Note, how-
ever, that nonsmooth methods can also be conjugated with a
material description of a soft structure including nonlinear
stiffness and damping to account for these effects and tune
them at ease, see, e.g., the recent modeling of felt in piano
action proposed in Thorin et al. (2017).

In this contribution, a nonsmooth numerical approach
based on a Moreau-Jean time-stepping scheme is adapted to
the case of a string vibrating against a stiff obstacle with hard
contacts, for the specific purpose of musical acoustics. The
examples have been purposely chosen to restrict our discus-
sion to hard contacts where the nonsmooth method should be
an interesting alternative to compliant approaches. Standard
nonsmooth methods are known to produce numerical disper-
sion (Yoong et al., 2017), which is a specific issue in the field
of musical acoustics. During non-contacting phases, an exact
scheme, introduced in Bilbao (2009) and used for compliant
contact approaches in Issanchou et al. (2017) and van
Walstijn and Bridges (2016), is considered in order to ensure
a numerical integration method with controlled dispersion.
The efficiency of the scheme is demonstrated on two exam-
ples which are compared either to a compliant approach or to
experimental results. First, the case of a two-point bridge
mimicking a tanpura is shown. Results are then extended to a
fretted electric bass having at most 20 contact points. The
accuracy of the two different modeling options (nonsmooth
vs compliant approach) are discussed and the computational
burdens of these methods are compared.

II. MODEL

A. Vibrating string against a unilateral obstacle

We consider a stiff string of length L (m), mass per unit
length l (kg m!1), and tension T (N). Its Young’s modulus E
(Pa) and moment of inertia I define its stiffness. The string
vibrates against a unilateral obstacle, the profile of which is
described by g(x) (see Fig. 1). Equation (1) describes the dis-
placement of the string along (Oz),

FIG. 1. (Color online) Scheme of a string vibrating against a unilateral
obstacle.
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lutt ! Tuxx þ EIuxxxx ¼ f ðx; tÞ; (1)

where the subscript t (respectively, x) refers to a partial
derivative with respect to time (respectively, space). The
right-hand side f(x, t) refers to the contact force per unit
length.

The string is simply supported at its endpoints, so that
8t2Rþ : uð0; tÞ ¼ uðL; tÞ ¼ uxxð0; tÞ ¼ uxxðL; tÞ ¼ 0: In order
to achieve a fine representation of eigenfrequencies and
damping parameters, we employ the following modal
description of the string:

uðx; tÞ ¼
XNm

j¼1

qjðtÞ/jðxÞ; (2)

where /jðxÞ ¼
ffiffiffiffiffiffiffiffi
2=L

p
sin ðjpx=LÞ and qj is the jth modal

amplitude.
Inserting the modal expansion (2) into the equation of

motion (1), multiplying by another mode shape and integrat-
ing over the string length, and then adding losses to the final
modal equations, one obtains

lð€q þ X2qþ 2! _qÞ ¼ F; (3)

where q ¼ ½q1; q2; :::; qNm '
T is the vector of unknown modal

amplitudes. X and ! are diagonal matrices such that X con-
tains radian frequencies Xjj ¼ xj ¼ 2p!j, !j being the jth
eigenfrequency, and ! contains damping coefficients
!jj ¼ rj. These quantities follow the model presented in
Issanchou et al. (2017), Issanchou et al. (2018), Pat!e et al.
(2014), and Valette and Cuesta (1993). We briefly recall the
expression of eigenfrequencies and damping parameters in
the Appendix. The vector F contains modal forces and repre-
sents the projection of the contact force onto mode shapes,
its entries read Fp ¼

Ð l
0 f ðx; tÞ/pðxÞdx, for p 2 f1;…;Nmg.

B. Contact force

We choose to model the contact condition by a uni-
lateral constraint in order to avoid the interpenetration of the
solids. Defining gðx; tÞ ¼ uðx; tÞ ! gðxÞ as the distance
between the string and the obstacle, this constraint is given
by

gðx; tÞ ( 0; 8t 2 Rþ: (4)

In order to satisfy Eq. (4), the reaction force introduced in
Eq. (1) has to be positive and vanishes only if the con-
straint is not active (open contact). The complete model is
the Signorini law which can be simply written with the
following notation (Acary and Brogliato, 2008; Signorini,
1933):

0 ) gðx; tÞ?f ðx; tÞ ( 0; (5)

meaning that either gðx; tÞ ¼ 0 and f ðx; tÞ ( 0, or f ðx; tÞ ¼ 0
and gðx; tÞ ( 0.

Second order dynamics with unilateral constraints
involves velocity jumps. The usual setting is to consider that
the velocity map t 7!utðx; tÞ is a right continuous function,

i.e., uþt ðx; tÞ ¼ utðx; tÞ, and of bounded variation. The nota-
tion uþt ðx; tÞ [respectively, u!t ðx; tÞ] stands for the right limit
(respectively, the left limit) of t 7! utðx; tÞ at time t, i.e.,
uþt ðx;tÞ¼lims!t

s>t
utðx;sÞðrespectively; u!t ðx;tÞ¼lims!t

s<t
utðx;sÞÞ:

Since the function is of bounded variation, these limits exist.
In order to define the solution, especially in a discrete

(finite-dimensional) system, a condition on the velocity after
an impact must be specified. To this purpose, we choose the
Newton impact law (Acary, 2016)

_gþðx; tÞ ¼ !. _g!ðx; tÞ if gðx; tÞ ¼ 0; (6)

where the coefficient of restitution . 2 ½0; 1' defines the
string behaviour at impact instants.

In the sequel, the Signorini law is formulated at the
velocity level, which allows one to explicitly control con-
tact losses taking into account the Signorini condition
together with the impact law. Therefore, the contact law is
written as

0) _gþðx; tÞþ . _g!ðx; tÞ?f ðx; tÞ ( 0 if gðx; tÞ ¼ 0;
f ðx; tÞ ¼ 0 otherwise:

#

(7)

The viability lemma of Moreau (1999) ensures that the con-
dition at the velocity level (7) implies the condition at the
position level (5) if the constraint (4) is satisfied at the initial
time.

Since the system has some discontinuities in the velocity
w ¼ _q, the acceleration _w is not defined everywhere in the
classical sense. A differential measure dw is associated with
the velocity w and plays the role of the acceleration. If we
also assume that w is of special bounded variation (i.e.,
w may be decomposed into a sum of an absolutely continu-
ous function and a jump function), the differential measure
can be decomposed with respect to the Lebesgue measure dt
as

dw ¼ €qdtþ ðwþ ! w!Þd~! ; (8)

where d~! is a discrete measure of the form Riaidsi with
given sequences faig and fsig of real numbers. The nota-
tion ds refers to the Dirac measure supported at time s [see,
e.g., Moreau (1988) for details on differential measures].
In other words, _wðtÞ ¼ €qðtÞ almost everywhere and at
impact instants t* we have dw ¼ ðwþ ! w!Þdt* . Similarly,
the reaction force in the modal space is defined by a vector
measure

dI ¼ Fdtþ Pd~! ; (9)

where the vector F corresponds to a modal continuous con-
tact force and the vector P is a modal contact impulse corre-
sponding to velocity jumps. In terms of differential measure,
the modal equations read as

lðdwþ X2qdtþ 2! _qdtÞ ¼ dI: (10)

By substituting Eqs. (8) and (9) in Eq. (10), we remark that
Eq. (3) is satisfied dt-almost everywhere. At the instants of
discontinuities, we obtain the impact equation
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lðwþ ! w!Þ ¼ P: (11)

The contact condition at the velocity level is also reformu-
lated in terms of measures as follows:

0 ) _gþðx; tÞ þ . _g!ðx; tÞ?di ( 0 if gðx; tÞ ¼ 0;
di ¼ 0 otherwise;

#

(12)

where di is the reaction force in the physical space. The rela-
tion between g, _g and q, _q is given by the relations between
the quantities in the physical space and the modal space. Let
us introduce the column vector /ðxÞ containing the Nm first
string modes, defined by /j ¼ /jðxÞ; 8j 2 f1; :::;Nmg.
From Eq. (2), we get that uðx; tÞ ¼ /TðxÞqðtÞ where q
¼ ½q1ðtÞ; :::; qNmðtÞ'

T and therefore

gðx; tÞ ¼ /TðxÞqðtÞ ! gðxÞ and _gðx; tÞ ¼ /TðxÞ _qðtÞ:
(13)

By duality, we also have

dIj ¼
ðL

0

/jdidx: (14)

Altogether, the dynamics is given by the following measure
differential complementarity problem:

_q ¼ w; (15a)

lðdwþ X2qdtþ 2! _qdtÞ ¼ dI; (15b)

qð0Þ ¼ q0;wð0Þ ¼ w0 ; (15c)

g ¼ /Tq! g ; (15d)

_g ¼ /T _q; (15e)

dIj ¼
ðL

0

/jdidx; (15f)

0 ) _gþ þ . _g!?di ( 0 if g ) 0: (15g)

III. NUMERICAL METHOD

In this section, we present a discretisation of the prob-
lem presented in Sec. II, which is able to handle nonsmooth
contacts. The distinctive feature of the proposed scheme is to
combine an exact method for the linear (non-contacting) part
of the equations of motion with a Moreau-Jean time-stepping
approach to handle impulses and velocity jumps. The result-
ing scheme thus prevents dispersion when the string freely
vibrates, which represents an improvement of already exist-
ing nonsmooth time-stepping methods.

In the rest of the paper, the variable tn denotes the dis-
crete time tn ¼ nDt, where Dt is the time step. The spatial
grid is defined by xi ¼ iDx; 8i 2 f0; :::;Ng, where Dx
¼ L=N is the spatial step. Due to selected boundary condi-
tions, uðx0; tÞ ¼ 0 and uðxN; tÞ ¼ 0 8t 2 Rþ, so only the
interior points of the grid are considered.

As prescribed in a Moreau-Jean scheme, Eq. (15b) is
integrated over ðtn; tnþ1'. One thus obtains

lðwþðtnþ1Þ ! wþðtnÞÞ þ lX2

ðtnþ1

tn
qdtþ 2l!

ðtnþ1

tn
_qdt

¼
ð

ðtn;tnþ1'
dI: (16)

The collision term on the right-hand side of Eq. (16) is
treated with the Moreau-Jean scheme, leading to the follow-
ing discrete approximation:

Pnþ1
i +

ð

ðtn;tnþ1'
dIi; (17)

where Pnþ1 ¼ ½Pnþ1
1 ; :::;Pnþ1

N!1'
T is a contact impulse over the

time interval, which will be defined later through a comple-
mentarity condition. The Moreau-Jean scheme is generally
used with a h-method to approximate the stiffness and damp-
ing terms in Eq. (16), as prescribed, for example, in Acary
and Brogliato (2008), Jean (1999), Jean and Moreau (1987),
and Moreau (1999). However, for mechanical vibratory sys-
tems expressed in the modal basis and with application to
musical acoustics where the problem of numerical dispersion
is particularly stringent, the exact scheme used in Bilbao
(2009) and Issanchou et al. (2017) shall be considered in
order to improve the discretisation of the stiffness and damp-
ing terms. Using the notations for discrete approximations,
wn

i + wþi ðtnÞ, and qn
i + qiðtnÞ, it reads

ðtnþ1

tn
qidt + Dtqn

i

1þ 1! cið Þ
x2

i Dt2

2
þ r*i Dt

; (18)

ðtnþ1

tn
ri _qidt + r*i Dtwn

i

1þ 1! cið Þ
x2

i Dt2

2
þ r*i Dt

; (19)

where the introduced terms ci and r*i are such that

ci ¼
2

x2
i Dt2
! Ai

1þ ei ! Ai
; (20)

r*i ¼
1

Dt
þ x2

i Dt

2
! ci

x2
i Dt

2

% &
1! ei

1þ ei
; (21)

with

Ai ¼ e!riDtðe
ffiffiffiffiffiffiffiffiffiffi
r2

i!x2
i

p
Dt þ e!

ffiffiffiffiffiffiffiffiffiffi
r2

i!x2
i

p
DtÞ; (22)

ei ¼ e!2riDt: (23)

Finally, one obtains the following time-stepping scheme
from Eq. (16) for the update of the modal velocity vector
using Eqs. (18) and (19):

wnþ1
i ! wn

i þ
Dtx2

i

1þ 1! cið Þ
x2

i Dt2

2
þ r*i Dt

qn
i

þ 2Dtr*i

1þ 1! cið Þ
x2

i Dt2

2
þ r*i Dt

wn
i ¼

1

l
Pnþ1

i : (24)

In matrix form, it is written
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wnþ1 ! wn þ DtCqn þ Dt $Cwn ¼ 1

l
Pnþ1; (25)

where C and $C are diagonal matrices with entries

Cii ¼
x2

i

1þ 1! cið Þ
x2

i Dt2

2
þ r*i Dt

;

$Cii ¼
2r*i

1þ 1! cið Þ
x2

i Dt2

2
þ r*i Dt

:

The update of the modal amplitudes is given by the discreti-
sation of Eq. (15a) as

qnþ1
i ¼ qn

i þ Dtwnþ1
i : (26)

We introduce a matrix S containing the Nm first string
modes, defined by Sij ¼ /jðxiÞ; 8ði; jÞ 2 f1; :::;N ! 1g
,f1; :::;Nmg. Defining the physical discrete displacement
vector u ¼ ½uðx1; tÞ; :::; uðxN!1; tÞ'T , one easily obtains the
following relationship: u ¼ Sq (Issanchou et al., 2017).
Denoting the displacement of the string at contact points by
uc ¼ Scq, its velocity by vc ¼ Scw and introducing the
velocity without contact wnþ1

free as

wnþ1
free ¼ wn ! DtCqn ! Dt $Cwn; (27)

one obtains the following linear equation between vnþ1
c and

pnþ1
c , with Pn ¼ DxST

c pn
c:

vnþ1
c ¼ Scwnþ1

free þWccpnþ1
c ; (28)

where the Delassus’ matrix Wcc is computed as

Wcc ¼
Dx

l
ScST

c : (29)

The complementarity condition (15g) is discretised in a fully
implicit way as prescribed for the Moreau-Jean scheme. For
a contact point indexed by ci, one has to solve

pnþ1
ci
¼ 0 if gn

ci
> 0;

0 ) vnþ1
ci
þ .vn

ci
?pnþ1

ci
( 0 if gn

ci
) 0:

(

(30)

Let us denote the index set of active contact points as Q!1
te .

The impulse pnþ1
%c is the solution of

vnþ1
%c ¼ S%cwnþ1

free þW%c%cpnþ1
%c ;

0 ) vnþ1
%c þ .vn

%c?pnþ1
%c ( 0;

(

(31)

which is a linear complementarity problem (LCP). A LCP
consists in finding the vectors z; k such that

z ¼Wkþ a;

0 ) z?k ( 0

(

(32)

for some given matrix W and given vector a. Let us recall
that the LCP has a unique solution for all a if the matrix W
is a positive definite matrix (Cottle et al., 1992). It is

straightforward to identify the vector a in Eq. (32) as a
¼ S%cwnþ1

free þ .vn
%c and the matrix W ¼W%c%c . In our applica-

tion, the Delassus matrix W is obviously symmetric positive
definite and a unique solution is ensured. If the string vibrates
against a single point obstacle, the Delassus matrix reduces to
a positive scalar and the LCP can be solved directly as

pnþ1
%c ¼ max 0;! 1

W%c%c
vnþ1

%c;free þ .vn
%c

' (% &
: (33)

In the case of a distributed obstacle, a LCP solver has to be
employed. In this article, we employ the numerical solvers
provided by the SICONOS software (Acary et al., 2016) which
is dedicated to the modelling and simulation of nonsmooth
dynamical systems. In SICONOS, several numerical algorithms
are implemented to solve LCPs. Depending on the number
of constraints and the required accuracy, pivoting, or pro-
jected successive overrelaxation (PSOR) techniques may be
used (Cottle et al., 1992). Simulations in the present paper
are based on the use of a standard pivoting technique for
solving LCP, known as Lemke’s method (Cottle et al., 1992)
to get a high precision solution at the machine accuracy.

IV. NUMERICAL RESULTS

A. One contact point: The case of tanpura

In this section, the case of a two point bridge is consid-
ered, which consists in placing a point obstacle near a
boundary. The string parameters are selected as in Issanchou
et al. (2017) for the purpose of comparison. Geometric and
material relevant properties are recalled in Table I. The point
obstacle is located at 6 mm from the boundary x¼ 0, in
agreement with the range of positions mentioned in Valette
and Cuesta (1993) to mimic the tanpura bridge with a two
point approximation.

The initial position of the string is a smoothed centered
triangle with a maximal amplitude u0,max¼ 1.8 mm and no
velocity. The nonsmooth numerical procedure is compared
to the power-law approach described in Issanchou et al.
(2017), where the contact force is modeled as f ¼ K½g'aþ,
where ½g'þ ¼ 1

2 ½gþ jgj', with K ¼ 1013 and a ¼ 1:5 for sim-
ulations. In order to be in line with the assumptions retained
in Issanchou et al. (2017), we select an equal number of
modes Nm and grid points N, specifically Nm¼N – 1, and set
N¼ 1002 for the simulations. For completeness, the out-
comes of the nonsmooth method are compared for both
. ¼ 0 and . ¼ 1.

A convergence study has been led using the stringent
criterion introduced in Issanchou et al. (2017) to control the
long-term behaviour. The criterion inspects relative errors of
the numerical results on a 3 s simulation and imposes the
error to be less than 10!1. Following that, the sampling fre-
quency is selected as Fs¼ 2 MHz for both compliant and

TABLE I. Electric guitar string properties.

L (m) d (mm) T (N) l (kg m!1)

1.002 0.43 180.5 1:17, 10!3
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nonsmooth cases, since it has been found that the conver-
gence is obtained at that sampling rate for the two methods.

The linear modal characteristics of the string are also
selected as in Issanchou et al. (2017), eigenfrequencies
and damping ratios resulting from an experimental identifi-
cation on a real guitar string. The identification has been
realised up to 7200 Hz, then models are employed to input
linear characteristics into the simulation up to the desired
maximal frequency. Models used for linear characteristics
are recalled in the Appendix, and selected values resulting
from model fitting shown in Issanchou et al. (2017) are
given in Table II.

Figure 2 shows the string displacement at a point located
at 1 cm from x¼ L. Associated sound files corresponding to
the displacement resampled at 44.1 kHz are available as
supplementary material.1 Its appears that selecting . ¼ 0 or
. ¼ 1 has no significant macroscopic effect on the simula-
tion result. Both values give a temporal displacement
extremely similar to that obtained with the penalty approach.
In all cases, a crenel shape appears which evolves in time
due to effects of dispersion and damping. As analysed for
the power-law approach in Issanchou et al. (2017), where
simulation outcomes are compared to experimental signals,
we can thus conclude that the nonsmooth method also
retrieves the essential features of the string vibration against
a point obstacle, with the same global accuracy as that
obtained with the penalty approach.

Spectrograms of numerical signals with the penalty
approach and the nonsmooth method with . ¼ 1 are shown
in Fig. 3. No significant difference is observed when . ¼ 0,
therefore we do not show the spectrogram in this case. In
both cases, there are no missing modes despite the centered
initial condition, due to energy transfers induced by colli-
sions. Moreover, both methods accurately recover the
descending formant observed experimentally. Such formants
constitute a distinctive feature of musical instruments such
as tanpuras.

We now explore the local behaviour of the simulated
string displacement at the obstacle position uc in Fig. 4,

with the nonsmooth method, . ¼ 0 and . ¼ 1, as well as
with the penalty approach. Zooms focus on the first two
contact periods. Despite similar global waveshapes, the
string has local specific and distinguishable behaviours,
around the obstacle, when colliding with it. When . ¼ 0,
as expected since no back velocity is enforced, the string
sticks to the obstacle for a short period of time when col-
liding, and then leaves it when the wave propagates back
(i.e., around 3:8, 10!3 s for the first contact time, then
around 8:8, 10!3 s for the second contact). When . ¼ 1,
the string bounces off the obstacle with a magnitude of
about 10!7 m and the signal takes the form of one time
step oscillations until the string leaves the obstacle for a
longer time around 3:8, 10!3 s. With the penalty
approach, smoother oscillations appear with similar ampli-
tudes. Interestingly, the envelope of oscillations of the
nonsmooth signal closely fits oscillations of the compliant
signal. The detailed behaviour of the string, computed
with the nonsmooth method and different values of Fs, is
presented in Fig. 5. Increasing the sampling frequency
does not significantly change the global string behaviour,
however, the local behaviour at the obstacle position is
affected. Note also that a very small penetration occurs
with the nonsmooth method, a numerical artifact linked to
the time discretisation. This numerical penetration is
reduced, and small bounces can be observed when . ¼ 1,
after the string reaches the obstacle. When . ¼ 0, the
string sticks to the obstacle at the height given by the first
discrete point where contact condition is activated, defin-
ing the depth of this numerical penetration.

Finally, nonsmooth and power-law approaches give
very similar results in the case of a point obstacle, and
no significant difference is observed between simulations
with . ¼ 0 and . ¼ 1 in the nonsmooth case, except
when focusing on the obstacle position. This can be
related to the analytic solutions for a string with a single
contact point where a sticking time is obtained as long as
the wave has not come back (see, e.g., Cabannes, 1984,
1987, Doyen et al., 2011, and Yoong et al., 2017 for sim-
ilar cases with bars).

We now discuss time costs of the nonsmooth (. ¼ 1) and
power-law (a ¼ 1:5; K ¼ 1013) approaches. Computation
costs, excluding initialisation, saving data and energy compu-
tation, are presented in Table III. For the compliant method,
they are presented either with a spatial grid which is fully

TABLE II. Model parameters for the electric guitar string.

B dve Q!1
te

1:78, 10!5 4:5, 10!3 2:03, 10!4

FIG. 2. (Color online) Displacement of
the string vibrating against a point
obstacle near a boundary, taken at
1 cm from the extremity x¼L.
Comparison between the penalty
approach, Fs¼ 2 MHz (green line), and
the nonsmooth method, Fs¼ 2 MHz,
. ¼ 0 (black dashed line) and . ¼ 1
(red line).
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included in the matrix S, meaning that its dimensions are
ðN ! 1Þ2, or with a matrix S which only includes the obstacle
position, meaning that its dimensions are 1, N ! 1. The for-
mer case strictly corresponds to the scheme presented in
Issanchou et al. (2017), while the latter case (modified com-
pliant method) contains an improvement where the number of
grid points N is no longer related to the number of modes Nm.
This further step is described in van Walstijn and Bridges
(2016), and is also implemented for the nonsmooth method.
All computations presented in Table III were led with MATLAB

on a single CPU with a clock at 2.4 GHz.
One can observe that taking into account only the con-

tact point in the modified compliant method allows one to
obtain a significant gain in computational times since a fac-
tor of 2 is present as compared to the power-law method
with a full S matrix. A more significant gain can be obtained
due to the nonsmooth method: computation costs are 12 to
37 times smaller. This is due, in particular, to the reduced
number of matrix vector products as well as a reduced time
for solving the LCP (straightforward in the point obstacle
case) compared to Newton-Raphson iterations. Note also
that computation times has been found to be once again
divided by a factor of 2 by running the same code with the

SICONOS software in a optimized C/Cþþ implementation
(Acary et al., 2016).

In this section, we discussed the behaviour of a string
vibrating against a point obstacle, mimicking the case of a tan-
pura. We observed that the nonsmooth simulation in the case
of a two point bridge was very close to the simulation led with
the power-law method, both being consistent with experimen-
tal data presented in Issanchou et al. (2017). Moreover, it
seems that the global behaviour of the string does not rely on
the coefficient of restitution, even though the local string
behaviour at the contact point does. In the following, we inves-
tigate a case implying multiple contact points.

B. Multiple contact points: Application to the electric
bass

In this section, the complexity is increased by consider-
ing a string vibrating against the fretboard of an electric bass
with up to 20 contact points. Electric basses are known for
their modern playing techniques such as pop and slap where
numerous contacts are intentionally provoked in the transient
attack, giving a peculiar bright and percussive sound (Bacon,
2013; Issanchou et al., 2018).

FIG. 3. (Color online) Spectrograms of
the string displacement in the case of a
point obstacle near a boundary (dB,
with a 70 dB dynamic). (a) Power-law
method, Fs¼ 2 MHz. (b) Nonsmooth
method, Fs¼ 2 MHz, . ¼ 1.

FIG. 4. (Color online) Displacement of
the string vibrating at the obstacle
position. Comparison between the
numerical simulation with the penalty
approach, Fs¼ 2 MHz (green line) and
the nonsmooth method with . ¼ 0
(black dashed line, black line in
zooms) and . ¼ 1 (red line),
Fs¼ 2 MHz.
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Figure 6 shows the guitar neck profile with its 20 frets
together with the initial condition imposed to the string. A
G-string of an electric bass is considered for simulations, its
properties are given in Table IV. The string is plucked at
64 cm from the nut with a maximal initial amplitude
u0;max ¼ 3:6 mm. As in Sec. IV A and according to the study
led in Issanchou et al. (2018), measured values of the linear
characteristics are selected to fit with the model up to about
3400 Hz, then models are employed with parameters
reported in Table V. In order to perform comparisons with
the power-law approach and with experimental results
obtained in Issanchou et al. (2018), 863 modes are retained
for simulations. The convergence of data is determined
according the criterion presented in Issanchou et al. (2017);
Issanchou et al. (2018) applied over a period of time recov-
ering all string/neck collisions. This implies large values of
Fs, nevertheless smaller values may be selected for other
applications. For instance, a convergence study on the spec-
tral content, associated to a perception evaluation of signals
with different Fs, may lead to smaller values of Fs with a sat-
isfactory sound rendition. This is, however, not the purpose
of the present paper.

Temporal results are shown in Fig. 7, with a comparison
of the nonsmooth approach with the experimental result
already shown in Issanchou et al. (2018), and then with the

compliant method. A spectral comparison is provided due to
the spectrograms of the displacements shown in Fig. 8.
Related sound files corresponding to the displacement
resampled at 44.1 kHz are available as supplementary mate-
rial.1 The presence of multiple contacts makes the dynamics
more complex but leads once again to similar results for the
two limit values of the restitution coefficient, namely, . ¼ 0
and . ¼ 1. Simulation results show that the temporal signals
are almost coincident. Consequently, only the case . ¼ 1 is
presented. It thus appears that the dynamics of collisions,
from a macroscopic point of view, is still dominated by
waves going back and forth in inter-fret intervals.

Comparing outcomes of the displacement obtained with
the nonsmooth method with experimental results shows an
excellent agreement, both in the global shape of the time
series and in the details shown in zooms in Fig. 7. The occur-
rence of a substantial high frequency content from the very
first collisions is clearly ascertained and retrieved, and the
long term behaviour remains similar. A few discrepancies
appear, however, as explained in Issanchou et al. (2018)
they are probably mainly due to (i) uncertainties related to
the experimental measurement of the neck profile and, to a
lesser extent, to the measured properties of the string; (ii) the
assumption that the fretboard is a rigid obstacle. Comparing
the two numerical methods shows that they behave very sim-
ilarly, with only slight discrepancies.

Focusing on spectrograms, a similar structure between
experimental and numerical data can be observed. In particu-
lar, energy transfers appear in the transient attack between 0
and 0.09 s, this time window corresponding to the occurrence
of contacts between the string and the fretboard. Once again,
this collision period of time, together with specific reinforced
spectral zones (e.g., around 4500 Hz), is particularly well
retrieved by numerical simulations. From a perceptive point
of view, associated sounds, given as supplementary mate-
rial,1 are very close to the ear.

Finally, the global dynamics of the string colliding with
frets is well described by both compliant and nonsmooth

TABLE III. Computation times with the compliant and nonsmooth methods
(implemented in MATLAB), in seconds, for the simulation of a one second sig-

nal in the case of a point obstacle.

Compliant approach, full spatial grid included in S

Fs (kHz) 44.1 88.2 176 1000

Newton-Raphson 30 55 105 362

Other operations 175 352 710 3964

Total time 205 407 815 4326

Compliant approach, S at the obstacle position only

Fs (kHz) 44.1 88.2 176 1000

Newton-Raphson 7.7 12 29 140

Other operations 100 196 343 1592

Total time 108 208 372 1732

Nonsmooth method

Fs (kHz) 44.1 88.2 176 1000

LCP 1.4 5.3 3.9 21

Computation in Eq. (27) 1.4 2.6 5.2 38

Other operations 4.3 8.0 13 83

Total time 7.1 16 22 142 FIG. 6. (Color online) A string vibrating against a bass guitar fretboard rep-
resented by the function g.

FIG. 5. (Color online) Displacement of
the string at the obstacle position.
Comparison between the numerical
nonsmooth simulation with
Fs¼ 2 MHz (. ¼ 0: black dashed line,
. ¼ 1: red line) and Fs¼ 8 MHz
(. ¼ 0: blue dashed line, . ¼ 1:
magenta line). (a) First overall string/
obstacle contact, (b) second overall
string/obstacle contact.
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approaches. In the studied configuration, both numerical
methods produce very similar results at the measurement
point considered, selected from experiments. Furthermore,
the value of the restitution coefficient . does not substan-
tially affect simulations, meaning that, in the present case,
the nonsmooth approach would be free of parameters to be
adjusted.

The simulation of 0.1 s of signal (time interval recover-
ing all contacts) at Fs¼ 1 MHz lasts 5 min with MATLAB while
it lasts only 30 s with SICONOS. Numerical costs are thus
found to be divided by a factor 10: once again, an important
gain in computation can be achieved with the nonsmooth
method on SICONOS.

V. CONCLUSION

A nonsmooth approach to the numerical simulation of
musical strings colliding with an obstacle has been pre-
sented. The main feature consists in combining an exact
scheme for the vibratory (linear) part and a Moreau-Jean
scheme for the contact force, embedded in a modal
description of the dynamics. This results in a computation-
ally efficient scheme preventing numerical dispersion dur-
ing free flight phases. The method has been tested on two
cases involving either one contact point (a two point
bridge mimicking a tanpura) or multiple contacts (the case
of an electric bass). In both cases, it has been found that
the nonsmooth approach is very accurate and compares
well with experiments and simulations led with a

compliant method. A significant gain in computational
times is obtained with the proposed nonsmooth method.
Interestingly, for the two test cases, simulation results are
relatively insensitive to the choice of the value of the resti-
tution coefficient, so that the model could finally be con-
sidered as free of parameters to describe collisions. This
particular behaviour should, however, be limited to a few
number of pointwise contacts where, from a macroscopic
point of view, the behaviour during collisions is governed
by waves going back and forth in the string. In contrast,
the coefficient of restitution should have an effect when
considering a large number of contact points or continuous
contact regions (e.g., a fretless bass), where sticking may
occur on a whole interval. Note also that the nonsmooth
method has been tested in specific examples where a hard
collision is at hand and no specific physical detail on the
contact is needed to have efficient simulations accounting
for the rich contact dynamics of the string. For other cases
encountered in musical acoustics where the contact is
softer, e.g., mallet/membrane or finger/string interactions,
the nonsmooth approach may also be used, either with a
refined continuous description of the deformable bodies,
involving an increase of the computational burden to take
into account the whole dynamics; or with a localised
behaviour law to account for the felt as done, for example,
in Thorin et al. (2017). These points are thus left for fur-
ther studies where a more complete comparison of non-
smooth and compliant methods could be given.

TABLE IV. Electric bass string properties.

L (m) d (mm) dcore (mm) T (N) l (kg m!1)

0.863 1.14 0.43 191.6 6:69, 10!3

TABLE V. Models parameters for the electric bass string installed on an

electric bass.

B dve Q!1
te

3:5, 10!5 0.01 6, 10!6

FIG. 7. (Color online) Displacement of
the string vibrating against the neck of
a bass guitar, taken at 9 mm from the
extremity x¼L. Comparison between
the experimental signal (blue line) and
the nonsmooth method, . ¼ 1,
Fs¼ 4 MHz (red line), and between the
nonsmooth method, . ¼ 1, Fs¼ 4 MHz
(red line) and the compliant method,
Fs¼ 8 MHz (green line).
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APPENDIX: LINEAR CHARACTERISTICS

A complete model for the computation of eigenfrequen-
cies is given in Issanchou et al. (2018) which includes the
tension and the stiffness of the string, together with the
potential mobility at one extremity, as observed, e.g., for
string instruments such as bass and guitar. The eigenfrequen-
cies are then described by

!j ¼ j
c

2L
1þ Bj2

2
þ lc

jp
Im Ynut x0;jð Þ
) *

 !

; (A1)

where c ¼
ffiffiffiffiffiffiffiffi
T=l

p
is the wave velocity of the ideal string,

B ¼ p2EI=TL2 is the inharmonicity coefficient, and Ynut is
the mobility at the nut, evaluated at x0;j ¼ jðpc=LÞ. In this
paper, the mobility is taken as zero in the case of a two point
bridge while it takes measured values [see Issanchou et al.
(2018)] in the case of an electric bass.

Damping parameters are modeled through the quality
factor Qj ¼ p!j=rj, such that

Q!1
j ¼ Q!1

j;air þ Q!1
j;ve þ Q!1

te þ
lc2

pL!j
Re Ynut xjð Þ
) *

; (A2)

where subscripts air; ve, and te, respectively, refer to losses
due to air friction, viscoelastic effects, and thermoelastic
effects. Their detailed expressions are given by

Q!1
j;air ¼

jc

2L!j

R

2pl!j
; (A3)

Q!1
j;ve ¼

4p2lEcoreIcoredve

T2

!3
0;j

!j
; (A4)

where R ¼ 2pgair þ 2pdeq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffipgairqair!j
p

, with gair and qair the
dynamic viscosity coefficient and the air density, respec-
tively. Usual values gair ¼ 1:8, 10!5 kg m– 1 s– 1 and qair

¼ 1:2 kg m– 3 are selected. The employed equivalent diame-
ter is expressed as

deq ¼
p
2

1þ 2

p

% &
2rwinding þ 2rcore

% &
; (A5)

where rwinding and rcore are the radii of the string winding
and core, respectively. Viscoelastic effects are assumed to be
located in the string core so that the Young’s modulus Ecore

and the moment of inertia I ¼ pr4
core=4 are related to the core

only. The notation !0;j refers to the value jc=2L and Q!1
te is

taken as a constant.

1See supplementary material at https://doi.org/10.1121/1.5039740 for asso-
ciated sound files corresponding to the displacement resampled at
44.1 kHz.
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