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ABSTRACT:
String excitation by the tangent in the clavichord is a unique mechanism. The tangent, keeping in contact with the

string after the initial strike, continuously controls the string tension. Four main flexible subsystems are considered

in the clavichord: the tangent/key subsystem, the string subsystem, the bridge-soundboard subsystem, and the string

damper subsystem. A modal description of the dynamics of these subsystems is proposed. Parameters of the subsys-

tems are estimated on a copy of a historical instrument by Hubert (1784). The different subsystems and their cou-

plings are modeled using a modal Udwadia–Kalaba formulation. The string-tangent interaction is modeled via the

intermittent contact dynamics, using the Kirchoff–Carrier string model. Realistic string, soundboard, and tangent

motions are obtained using a time-domain synthesis scheme that computes the dynamics of the uncoupled subsys-

tems and the constraints resulting from coupling between them. Simulated motions of the model in response to a

driving force on the key are analyzed. The results are consistent with experimental measurements and published data

on the dynamics of the clavichord. The model is able to reproduce the main acoustic features of the instrument: force

on the key for intonation control, key velocity for dynamic nuances control, and constant spectral slope for varying

dynamic nuances. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0006438

(Received 11 February 2021; revised 14 August 2021; accepted 19 August 2021; published online 4 October 2021)
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I. INTRODUCTION

The clavichord is highly prized as a practice instrument

among keyboard players because of its superior ability to

encourage a polished technique.1 Its sound is weak and

sometimes a little disappointing upon first contact with the

instrument. One explanation for the special appreciation of

the clavichord as a wonderful coach of finger technique lies

in the refined string control allowed by its simple and direct

action. In the clavichord, the string and tangent stay in con-

tact, i.e., are mechanically coupled, as long as the key

remains depressed (see Ref. 2 for a thorough presentation of

the instrument). This feature has important consequences for

the sound and the dynamic of the instrument, allowing for

expressive pitch control, a unique feature among stringed

keyboard instruments. The aim of the present research is to

develop a physical model of the clavichord that is able to

account for and synthesize the specific feature of the clavi-

chord’s action, from finger motion to soundboard vibration.

Relatively few acoustic studies on the clavichord have

been published so far. The first ones3,4 mainly report

descriptions of sound features (level, spectrum) due to the

tangent action compared to the piano and harpsichord

actions. A study on the clavichord touch and action is devel-

oped in Ref. 5, showing that hardness of touch and pitch sta-

bility are related to string tension and key balance

parameters. Some aspects of the physics of the instrument

are investigated in Ref. 6: soundboard and cavity coupling,

tangent velocity profile and string displacement, sound

decay rate, and string pair coupling effects. A linear string

model is used for qualitative explanation of the tangent

velocity profile (modeled as an exponential decaying func-

tion), string motion, and sound decay rate. Based on these

results, a comparison with the piano and harpsichord is

derived in Ref. 7. Focusing on the string excitation mecha-

nism, the dynamics of the clavichord is revisited in Ref. 8.

A mass-spring-damper model of the key/tangent and string

system oscillation is developed. Using a quasi-static approx-

imation of the string motion and a delay-line model of the

string, the excitation dynamics is studied and compared to

experimental data. A linear relationship between tangent

velocity and sound pressure level (SPL) is found. String dis-

placement (and then variation of string tension) has a signifi-

cant effect on fundamental frequency, but the sound spectral

slope does not vary much with tangent velocity or displace-

ment. Measurements on four clavichords are in good agree-

ment with these findings.9 Musical consequences of the

needed joint tangent displacement/velocity controls for the

clavichord playing technique are studied in terms of the so-

called “clavichord’s paradox.”10

As for sound synthesis, two approaches for physical

modeling of the clavichord have been published so far. The

signal processing approach in Ref. 11 is based on commuted

wave-guide synthesis: string/tangent interaction is partly

based on sampling of real sounds (for a realistic knock

sound) and partly on additional filters accounting for the

a)This paper is part of a special issue on Modeling of Musical Instruments.
b)ORCID: 0000-0002-2629-8752.
c)Also at Instituto de Etnomusicologia, Centro de Estudos em M�usica e

Dança, Universidade Nova de Lisboa, Lisbon, Portugal.

2350 J. Acoust. Soc. Am. 150 (4), October 2021 VC 2021 Acoustical Society of America0001-4966/2021/150(4)/2350/14/$30.00

ARTICLE...................................

https://doi.org/10.1121/10.0006438
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0006438&domain=pdf&date_stamp=2021-10-04


variable string tension during a tone. Physical modeling of

the piano gave birth to a successful software piano synthe-

sizer able to produce realistic sound synthesis for modern

and historical pianos, for harpsichords as well as for hybrid

instruments, and for the clavichord.12 For commercial rea-

sons, the physical modeling techniques used and specific

features for the clavichord model are not published, but it

seems that a hard metallic hammer is simulated for the ini-

tial tangent strike, together with an additional after-touch

effect accounting for the enforced tangent/string contact.

Note that other physical piano models based on finite ele-

ment techniques have been developed and published.13,14

The aim of this paper is to develop a physical model of

the clavichord with special attention to the collision and

contact between the tangent and the string, which is of prime

importance for explaining the instrument’s dynamics and

sound features. Intermittent contacts are often encountered

in musical instruments and have been studied in numerous

works in the past decade. Collisions (see Ref. 15 for a

review on the subject) are modeled by a penalty

approach;16,17 by nonsmooth contact dynamics, which is

particularly adapted for hard contacts18 or dry-friction and

stick-slip transitions;19 or by a Lagrange multiplier

approach, particularly fit for multibody systems.20 This last

method coupled to the modal Udwadia–Kalaba (U–K) for-

mulation seemed appropriate for the clavichord, following

recent results for stringed instruments,21 including the guitar

and Portuguese guitar.22,23 In Sec. II, a functional descrip-

tion of the clavichord in terms of vibrating subsystems

results in a simplified one-string model. Parameters are iden-

tified using experimental measurements on a copy of a his-

torical instrument. A model of tangent/string interaction

based on the Kirchhoff–Carrier string representation and the

U–K formulation for coupled dynamical systems is devel-

oped for the one-string clavichord model in Sec. III. The

modal equations of the U–K model can be solved by means

of a simple finite difference time discretization scheme.

Synthesis results are compared to the measured dynamic

behavior of the real clavichord using experiments and pub-

lished data in Sec. IV.

II. VIBRATORY AND ACOUSTIC SUBSYSTEMS IN THE
CLAVICHORD

A. Principle of the clavichord and tangent action

A clavichord and its parts are described in Fig. 1(a)

[instrument built in 2007 and inspired by a Hubert (1784)

historical model]. The main parts of the instrument are indi-

cated on the picture. The strings, organized in pairs, are

stretched between the hitch-pins and tuning pins and

attached to the radiating soundboard through the bridge and

bridge pin. Strings are functionally divided into three sec-

tions. The “damped section” is between the hitch-pin and

the tangent. This section is partially covered by strips of

FIG. 1. (Color online) (a) Description of a clavichord; (b) sketch of the clavichord’s mechanism in three positions of the touch: at rest, the tangent flushing

the string, and after excitation.
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cloth. Its vibration is rapidly damped after excitation. The

“played section” vibrates between the tangent and bridge as

long as the tangent stays in contact with the string after the

initial tangent strike. When the key is released, the tangent

contact is lost, and the string vibration is damped by the

cloth strips. The “resting section,” between the bridge and

the tuning pin, is not directly excited by the tangent, but as

it is not damped in the clavichord (contrary to, e.g., the

square piano), partial transmission of the played section

vibration results in sympathetic vibration.24,25 The strings

are pressed vertically on the bridge and pressed horizontally

on the bridge pins laid out along the bridge. This contact

leads to the soundboard/string coupling. The soundboard

vibrates under the action of the string, and because of its

large surface, sound is radiated in the air.

A complete study of the instrument is beyond the scope

of the present work: only the simplified model displayed in

Fig. 1(b) is studied in depth. This simplified model is made

of only one string (the chosen string is the first string of the

G#3 choir) and the corresponding key, tangent, and damper.

The string is stretched between the hitch-pin and tuning pin

and in contact with the bridge at the bridge pin. The sound-

board and bridge are those of the whole instrument because

it is important to consider this part in its integrity even for

modeling a unique string. Other aspects of the instrument,

like the case and lid, are not considered in the present study,

because their vibratory and acoustic functions are only of

second order.

B. Vibratory and acoustic subsystems

For modeling purposes, the model can be considered as

an assembly of four vibrating subsystems as displayed in

Fig. 2. The initial force for playing the instrument is pro-

vided by the player’s finger. The player moves the tangent/

key subsystem, the first subsystem, providing the string

excitation. The strings, the second subsystem, act as the

vibratory engine of the instrument. Attached to the left side

of the strings are the cloth dampers, the third subsystem.

Attached to the right side of the strings is the bridge/sound-

board subsystem, the fourth subsystem.

The string is the central subsystem of the instrument.

Let YSðx; tÞ [respectively, YDðx; tÞ; Ykðx; tÞ; YBðxB; tÞ] be the

string displacement (respectively, damper displacement,

key-tangent subsystem displacement, bridge displacement)

at position x (respectively, x, x, xB). The vibratory subsys-

tems are coupled to the string at points xDi, xLtg, xB (ith
damper, tangent, and bridge). The first subsystem, the tan-

gent/key subsystem, can be considered as a rigid rod that

tilts with respect to a pivot. When the tangent strikes the

string, the elastic string reacts and the whole system oscil-

lates. The tangent has a mass MTg¼ 5 g, and the key has a

mass Mk¼ 30 g. The length of the key is LT ¼ 28:9 cm. The

pivot of the key (balance point) is situated at a distance

Lp ¼ 17:2 cm of the back of the key, the finger presses the

key at a distance Lf ¼ 27:9 cm of the back of the key, and

the tangent is located at a distance Ltg¼ 3.5 cm of the back

of the key [see Fig. 1(b)]. Associated modal parameters for

the tangent/key subsystem (kk;mk; ck) are used. The string,

the second subsystem, is characterized by its mass, elastic-

ity, and damping factors. Between the hitch-pin and excita-

tion point, the third subsystem is the cloth strips damper,

represented by N parallel dash-pots characterized by their

mass and viscous damping coefficients (mD, cD). The num-

ber of dampers is set empirically to N¼ 65, as it seemed

enough to ensure effective damping.

In the remainder of Sec. II, parameters of the subsys-

tems in Fig. 2 are estimated using the instrument displayed

in Fig. 1(a) and the G#3 string. Three functional parts of the

string can be identified: between x¼ 0 m and x¼ 0.2 m is

the damped part of the string, with a cloth damper coiled up

FIG. 2. (Color online) Schema of the modeled G#3 string being excited by the tangent.
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between x¼ 3.4 cm and x¼ 13.7 cm. The played part of the

string is between x¼ 0.2 m and x¼ 0.53 m. The sympathetic

part of the string is between the bridge pin x¼ 0.53 m and

tuning pin x¼ 0.84 m.

C. The key-tangent subsystem

The key-tangent subsystem mass (determined in Sec.

III B) is mk ¼ 1:17� 10�2 kg. It is represented by a rigid

body mode, and its stiffness is kk ¼ 0 N m�1. Its damping is

set to ck ¼ 2:5 kg�s�1 to reproduce the low frequency oscil-

lation damping of the tangent-string contact point observed

in Sec. IV B.

D. The string subsystem

The string modal damping characteristics are obtained

by measurements of the vibrating string stretched on a string

sand bench, allowing for measurements with almost full

decoupling of the string from other vibratory structures. The

Valette and Cuesta string model (see Sec. III C 3) is used.

The string is excited by a copper wire that breaks at a given

tension when lifted vertically. The vibratory displacement of

the string is measured at the other extremity by means of

optical forks.26 For the right (sympathetic) part of the G#3

string (L¼ 31.7 cm, ds ¼ 0:33 mm, f0 ¼ 396:9 Hz), damping

characteristics for 23 partials between 396.9 and 9354 Hz are

analyzed using the high-resolution algorithm ESPRIT.27–29

The measured damping coefficients are matched with

the Valette and Cuesta model and displayed in Fig. 3, with

the parameters reported in Table I, where E and q corre-

spond to the Young’s modulus and density of a brass string,

respectively; gair and qair are taken from the previous

data;30 and other parameters are defined in Sec. III C 3.

Experimental Qexp and theoretical Qth quality factors are

reported together with 95% error bars for ten measures and

relative error �Q ¼ ðjQ exp � QthjÞ=Q exp.

E. Bridge and soundboard subsystems

To simulate the vibratory motion of the bridge, the

modal parameters (mass matrix, stiffness matrix, damping

matrix, mode shapes) of this subsystem need to be known.

As no analytical solutions can be given for such a system,

modal parameters of the bridge are estimated by means of

experimental modal analysis21 based on measurements of

the bridge frequency response function (FRF). The FRF is

obtained by measurement of the vibratory response at the

coupling point between the bridge and the G#3 string [using

a PCB (Depew, NY) M352C65 accelerometer and an acqui-

sition system with a sample rate of 51.2 kHz and a 24 bit

depth]. The system is excited by an automatic impact ham-

mer (force sensor PCB 086E80). The accelerometer is

placed above the bridge pin and measures its vertical accel-

eration. All the other strings are damped by strips of cloth

woven on both sides of the strings (above the soundboard on

the right side and above the keyboard on the left side).

Modal analysis between 100 and 3500 Hz is conducted in

two steps. The first step is the estimation of physical poles

containing the modal frequencies and damping coefficients

of the analyzed structure, using the least square rational

function (LSRF) estimation method (MATLAB signal process-

ing toolbox31). The second step is the estimation of residues

that encapsulate the mode shapes and modal masses of the

system. Normalizing modal masses to mn¼ 1 kg for modes

n¼ 1, 2,…, NB, and the corresponding mode shapes are esti-

mated from the residues. The estimated and measured FRF

at the G#3 string/bridge coupling point are plotted on Fig. 4.

Thirty-one bridge modes are identified between 100 and

600 Hz, giving a satisfying reconstruction of the FRF. One

hundred eight bridge modes are identified between 600 and

3500 Hz, giving a representation of the bridge mobility for

higher frequencies. High frequency modeling is necessary

for a realistic simulation, even if it does not comply exactly

to physical modes of the system, as previously discussed in

Ref. 32. Measured and reconstructed impulse responses are

given in sound examples Mm. 1 and Mm. 2, respectively.

Mm. 1. Measured impulse response at the G#3 string/bridge

coupling point. This is a file of type “wav” (601 KB).

Mm. 2. Reconstructed impulse response at the G#3 string/

bridge coupling point. This is a file of type “wav”

(601 KB).

F. The damper subsystem, coupling between
subsystems and activation

The felt damper is modeled by a series of 65 dash-pots.

The parameters cD, mD are chosen so that the measured

damping effect exerted on the string once the key is released is

FIG. 3. (Color online) String quality factor: experimental (blue cross) and

theoretical (blue line) with 95% error bars (blue) and relative error (red

stars).

TABLE I. String’s parameters used to simulate the string damping

coefficients.

q (kg m�3) E (Pa) dve�te

7000 80� 109 1.5� 10�4

Qstruc gair (kg m�1 s�1) qair (kg m�3)

2.5� 104 1.8� 10�5 1.2
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well reproduced. The values chosen are mD ¼ 1:0� 10�2 kg

and cD ¼ 8:0� 102 kg s�1.

The four subsystems are coupled through the string: the

string is coupled to the damper at the damper location; it is

coupled to the bridge at the bridge pin location; it is coupled

to the tangent/key subsystem during its contact at the tangent

location. All these coupling conditions assume a continuity

of displacement between the string at the coupling position

and the other subsystem involved. Finally, the whole vibra-

tory system is activated by an external force that represents

the action of the finger on the key. The typical finger force

profile is a step with given attack and release times.

III. PHYSICAL MODELING USING THE U–K
FORMULATION

A. U–K formulation for the clavichord

In this section, the clavichord model in terms of four

coupled vibratory subsystems is modeled using a modal

U–K formulation.20,21 Let us consider a mechanical system

with mass matrix M, which is subjected to a force vector

Feðx; _x;tÞ, including all constraint-independent internal and

external forces. This system is also subjected to constraining

forces FcðtÞ. Denoting the dynamical solution yuðtÞ of the

unconstrained system and yðtÞ of the constrained system, the

motion equations of the constrained system derived by

Udwadia and Kalaba21,33 are

€y ¼ €yu þM�1=2Bþðb� A€yuÞ; €yu ¼M�1FeðtÞ; (1)

where A is the constraint matrix and b the constrained vec-

tor obtained from Ph holonomic and Pnh non-holonomic

constraints, /p and wp, respectively, defined as

/pðy; tÞ ¼ 0; p ¼ 1; 2;…;Ph; (2)

wpðy; _y;tÞ ¼ 0; p ¼ Ph þ 1;Ph þ 2;…;Ph þ Pnh: (3)

Time differentiation of Eqs. (2) and (3) gives the

matrix-vector constraint equation in terms of accelerations,

Aðy; _y;tÞ€y ¼ bðy; _y;tÞ: (4)

Note that the generalized Moore–Penrose inverse

matrix Bþ of B ¼ AM1=2 can be rendered numerically

robust, even for a singular constraint matrix. For a particular

external (finger) excitation Fe(x, _x,t), these equations are

solved using a suitable time step integration scheme. A

modal version of the U–K formulation suitable for continu-

ous flexible systems like musical instruments is derived.21

Assuming a set of S vibrating subsystems defined in terms

of their unconstrained modal basis and coupled through P
kinematic constraints, one obtains

€q ¼ W ~M�1ð�~C _q � ~Kq þ FextÞ; (5)

where q represents the vector of modal displacements;
~M; ~K; ~C are, respectively, the modal mass matrix, modal

stiffness matrix, and modal damping matrix; and W ¼ 1

� ~M�1=2BþA is a global transformation matrix (which can

conveniently be computed in advance of the time loop),

where A is the modal constraint matrix, and Fext are the

external modal forces applied on the system.

B. Key-tangent modeling

A mode shape is associated with the key-tangent sub-

system to model the tilting motion of the key. The modal

representation of this system is given by

Ykðx; tÞ ¼ /kðxÞqkðtÞ; (6)

where Yk is the displacement of the key-tangent subsystem,

/k is its mode shape, and qk is its modal amplitude, and

mk €qkðtÞ þ ck _qkðtÞ þ kkqkðtÞ ¼ FextðtÞ; (7)

where mk, ck, and kk are, respectively, the modal mass,

modal damping, and modal stiffness of the key-tangent

FIG. 4. (Color online) Bridge and soundboard modal analysis. (a) Top pan-

el:ôcomparison of the spectral magnitude (ref 1 dB: 1m s 2 N 1) of the mea-

sured (blue) and reconstructed (red) FRF. Middle panel: corresponding

unwrapped phase. Bottom panel: corresponding mode shapes. (b) corre-

sponding measured (blue) and reconstructed (red) impulse responses.
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subsystem, and Fext is the modal excitation force that the

musician exerts on the key. The key is modeled as a rigid

body mode in rocking motion. The mode shape /k is given

in the following way:

/kðxÞ ¼ LT � x

LT � Lp
� 1; x 2 0; LT½ �: (8)

Let the linear density of the key be qk ¼ Mk=LT . For

any continuous linear system with density q, mode shape

/n, and length L, the modal mass mn is

mn ¼
ðL

0

q/nðxÞ2dx: (9)

Then the modal mass of the key-tangent subsystem mk

is the sum of the tangent modal mass and that of the key,

mk ¼ MTg/
kðLtgÞ2 þ

ðLT

0

qk/
kðxÞ2dx: (10)

After some calculations, it gives

mk ¼ MTg
LT � Ltg

LT � Lp
� 1

� �2

þ Mk

3L2
p � 3LpLT þ L2

T

3 LT � Lpð Þ2
:

(11)

C. String modeling

1. Modal description of the string

A modal representation of the string complying with

the modal U–K formulation is given in this section. A modal

expansion of the string displacement YS is

YSðx; tÞ ¼
XNs

n¼1

/S
nðxÞqS

nðtÞ; (12)

where /S
n are the mode shapes of the string, qS

n are its modal

amplitudes, and Ns is the number of string modes.

Considering that the boundary conditions of the clavichord

string are pinned-pinned, one obtains the following string’s

mode shapes, for a string length L:

/S
nðxÞ ¼ sin

npx

L

� �
; n ¼ 1; 2;…;N: (13)

For a large enough static displacement, the geometrical

non-linear force FS
nl related to the string’s variation of ten-

sion needs to be considered. This yields the following

string’s modal equations:

MS€qS þ CS _qSþKSqS þ FS
nlðqS; _qSÞ ¼ 0; (14)

where MS, CS, and KS are the modal mass matrix, the modal

damping matrix, and the modal stiffness matrix of the string,

respectively, and qS is the modal amplitude vector of the

string. In Sec. III C 2, geometrical non-linear forces are

expressed by means of the Kirchhoff–Carrier model.

2. Non-linear string dynamics in string-tangent
interaction

The tangent lifts the string after the initial contact and

increases the string tension. This displacement can be quite

significant, up to 3–5 mm, inducing a substantial rise in

pitch. The string uplift is a geometrical deformation, result-

ing in non-linear forces that must be considered in the

dynamics of the instrument. For dynamic modeling of the

non-linear forces, the Kirchhoff–Carrier non-linear string

model is used,34,35 following previous work on the 12-string

Portuguese guitar.22,23 Note that in this one-dimensional

(1D) string motion model, all couplings between transverse

and longitudinal motions are neglected. This seems to be a

convenient approximation for 1D simulation; even if for

small string vibratory amplitude, these couplings exist and

are important for detailed potential energy considerations.36

According to the mode shapes in Eq. (13), the

Kirchhoff–Carrier model leads to geometric non-linear

terms for computing the dynamic tension Tdyn,

TdynðtÞ ¼
ES

2L

ðL

0

@YSðx; tÞ
@x

� �2
" #

dx; (15)

which gives rise to the non-linear differential equation of

motion (T0 being the string tension at rest),

qS
@2YSðx; tÞ

@t2
� ðT0 þ TdynðtÞÞ

@2YSðx; tÞ
@x2

¼ 0 : (16)

The force Fnl due to geometric non-linear terms is

Fnlðx; tÞ ¼ TdynðtÞ
@2YSðx; tÞ
@x2

: (17)

Thereby, it yields the non-linear modal force terms,

Fnl
n ðtÞ ¼

ðL

0

Fnlðx; tÞ/nðxÞdx: (18)

Using Eqs. (12) and (13) and calculating the integrals in

Eq. (15) gives the dynamic tension that depends quadrati-

cally on the modal response amplitudes,

TdynðtÞ ¼
ESp2

4L2

XN

n¼1

n2 qnðtÞð Þ2: (19)

Then, calculating the integral in Eq. (18), the cubic

modal force terms are deduced,22

Fnl
n ¼

ESp4

8L3
n2qnðtÞ

XN

m¼1

m2qmðtÞ2: (20)

Equation (20) represents the modal non-linear forces for

the string due to the vertical displacement resulting from the

tangent lift. In contrast to the quasi-static situation, the force in

Eq. (20) can be computed in dynamic modeling of this interac-

tion. The increase in tension due to tangent height Ye is an
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important parameter for the player, as it is related to the hard-

ness of touch,5 i.e., the key force feedback felt by the player.

3. Model of string’s modal dampings

The string model by Valette and Cuesta37 is chosen to

bestow a proper damping coefficient to each string mode.

The air friction, the visco-elastic and thermo-elastic friction,

and the structural friction are taken into account and repre-

sented by the quality factors Qn;air, Qn;ve�te, and Qstruc,

respectively,

Q�1
n ¼Q�1

n;airþQ�1
n;ve�teþQ�1

struc

¼ R

2pqL

ðnf0Þ�1þ 4p2qLEIdve

T2
ðnf0Þ2þQ�1

struc ; (21)

where R stands for mechanical resistance,

R ¼ 2pgþ 2pds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pgairqairf

p
; (22)

and where qair and gair correspond to the dynamic viscosity

and the density of the air, respectively, and ds represents the

string’s diameter. Then Q�1
n represents the damping coeffi-

cient associated with the nth mode of the string, E is the

Young’s modulus of the string, I is the second moment of

inertia of the string, T is the string’s tension, qL is the linear

density of the string, and dve�te is the imaginary part of the

string Young’s modulus. The term dve�te ¼ dve þ dte encap-

sulates visco-elastic effects dve and thermo-elastic ones dte,

taking the same approach as Ref. 29. Qstruc is a constant

value. Using fn ¼ Q�1
n =2, one can obtain the damping fn

coefficients of the string.

D. Bridge modeling

The motion of the bridge is modeled using modal

equations. Modal expansion of the bridge displacement

is

YBðs; tÞ ¼
XNB

n¼1

/B
n ðsÞqB

n ðtÞ; (23)

where s is the curvilinear coordinate position on the bridge,

NB is the number of bridge modes, /B
n are the mode shapes

of the bridge, and qB
n are the modal amplitudes of the bridge.

Modal equations governing the bridge’s vibratory motion

are

MB€qB þ CB _qBþKBqB ¼ 0; (24)

where MB, CB, and KB are the modal mass matrix, the modal

damping matrix, and the modal stiffness matrix of the

bridge, respectively, and qB is the modal amplitude vector

of the bridge. Because of the complexity of the structure, as

opposed to the string, analytical expression cannot be

derived for bridge modal equations. Numerical values to the

bridge modal parameters are obtained by experimental

modal analysis (Sec. II E).

E. Damper modeling

The damper is modeled by coupling a portion of

string with a number of mass-spring-dampers, assuming

a continuity of displacement between the dampers and

the string at their contact points. All these mass-spring-

dampers are considered independent of one another. The

modal equations governing the dampers’ vibratory

motion are

MD€qD þ CD _qDþKDqD ¼ 0; (25)

where qD is the amplitude vector of the damper responses.

The length of qD is ND, the number of dampers. Matrices

MD, CD, and KD are square diagonal with identical coeffi-

cients mD, cD, and kD, respectively. All the mass-spring-

dampers associated with the cloth damping device have the

same mass, stiffness, and damping coefficients. Thus, all the

mass-spring-dampers have the same frequency and the same

damping. These mass-spring-dampers representing the cloth

damper are coupled with a certain length of the string, as

described in Sec. III F 3.

F. Couplings between subsystems

The individual subsystems are described with the help

of a modal representation. The modal constraint matrix A

and the vector b of the constrained system are given by

A €Q ¼ b, with

A ¼

AB

Ak

AD

2
6664

3
7775; b ¼

bB

bk

bD

2
6664

3
7775; €Q ¼

€qS

€qB

€qk

€qD

2
6666664

3
7777775
; (26)

where AB is the matrix coupling the string with the bridge

with bB its associated vector, Ak is the matrix coupling the

string with the key-tangent subsystem with bk its associated

vector, and AD is the matrix coupling the string with the

damper with bD its associated vector. Given the continuity

conditions for coupling, these matrices and vectors are

derived in Secs. III F 2, III F 1, and III F 3.

1. String and key-tangent subsystem coupling

When the tangent touches the string, coupling between

the two subsystems occurs. At the contact location, assum-

ing a continuity of displacement between the two subsys-

tems, the coupling conditions are

YSðxext; tÞ � YkðLtg; tÞ ¼ 0; (27)

USðxextÞ
� �T

qSðtÞ � UkðLtgÞqkðtÞ ¼ 0; (28)
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where Yk is the displacement of the tangent, and xext is the

position where the string is excited. The tangent is initially

located below the string with respect to axis y. The whole

string is initially at rest at altitude y¼ 0. At the moment

when the tangent reaches altitude y¼ 0, Ak must be modi-

fied to couple the two subsystems. The coupling conditions

are

If YkðLtg; tÞ<YSðxext; tÞ
) bk ¼ 0

and Ak ¼ 0

If YkðLtg; tÞ¼YSðxext; tÞ
) bk ¼ 0

and Ak ¼ USðxextÞ
� �T

0 � � � 0 �UkðLtgÞT 0 � � � 0

h i
:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
The U–K formulation applies constraints on the system

acceleration. Respecting the constraints on acceleration does

not imply respecting the constraints on the system displace-

ment and velocity. Stabilization techniques are needed to

avoid numerical drifts during the simulation because of the

displacement and velocity constraint violation. The tech-

nique used here is based on a geometric projection

approach, applied after each time step tk, when small com-

putational errors lead to violations of the holonomic

uðqðtkÞÞ 6¼ 0 and non-holonomic constraints WðqðtkÞ; _qðtkÞÞ
6¼ 0, expressed in terms of their modal coordinates and

velocities. Following Yoon et al,38 the displacement con-

straint violations are cancelled by perturbing the solution

qðtkÞ, so that the corrected solution qcðtkÞ ¼ qðtkÞ þ dqðtkÞ
perfectly copes with the constraints uðqcðtkÞÞ ¼ 0. This

yields39

uðqcðtkÞÞ ¼ 0

) uðqðtkÞ þ dqðtkÞÞ ¼ 0

) uðqðtkÞÞ þ du ¼ 0; (29)

with the constraint perturbation given by

du ¼
XN

n¼1

@u

@qn
dqn ¼ Adq; (30)

where A denotes the constraint gradient matrix, in terms of

the modal coordinates, which is typically non-square. Then

from Eqs. (29) and (30) stems the following constraint-

enforcing correction:

uðqðtkÞÞ þ Adq ¼ 0

) dq ¼ �AþuðqðtkÞÞ
) qcðtkÞ ¼ qðtkÞ �AþuðqðtkÞÞ ; (31)

where Aþ is the Moore–Penrose pseudo-inverse of matrix

A. When non-holonomic constraints are applied, a proce-

dure similar to Eq. (31) may be used for the corrected

velocities _qcðtkÞ ¼ _qðtkÞ þ d _qðtkÞ, which perfectly cope

with the velocity constraints WðqcðtkÞ; _qcðtkÞÞ ¼ 0. Then

WðqcðtkÞ; _qcðtkÞÞ ¼ 0

) WðqcðtkÞ; _qðtkÞ þ d _qðtkÞÞ ¼ 0

) WðqcðtkÞ; _qðtkÞÞ þ dW ¼ 0; (32)

with the constraint perturbation given by

dW ¼ Ad _q; (33)

and from Eqs. (32) and (33) stems the following constraint-

enforcing correction:

WðqcðtkÞ; _qðtkÞÞ þ Ad _q ¼0

) d _q ¼� AþWðqcðtkÞ; _qðtkÞÞ
) _qcðtkÞ ¼ _qðtkÞ � AþWðqcðtkÞ; _qðtkÞÞ : (34)

2. String-bridge coupling

The string and bridge are coupled, assuming a continu-

ity of the string and bridge displacements at the string-

bridge contact point: the string displacement YSðxB; tÞ must

be the same as that of the bridge YBðxB; tÞ, where xB is the

location of the coupling point on the string and xB is the

location of the coupling point on the bridge,

YSðxB; tÞ � YBðxB; tÞ ¼ 0: (35)

With modal coordinates, it leads to

USðxBÞ
� �T

qSðtÞ � UBðxBÞ
� �T

qBðtÞ ¼ 0; (36)

with the mode shape vectors

USðxBÞ ¼ /S
1ðxBÞ/S

2ðxBÞ� � �SNS
ðxBÞ

h iT
;

UBðxBÞ ¼ /B
1 ðxBÞ/B

2 ðxBÞ � � �/B
NB
ðxBÞ

h iT

;

(37)

where NB is the number of bridge modes, and NS is the num-

ber of string modes. Equation (38) shows the string-bridge

coupling matrix AB and the associated vector bB,

AB ¼ USðxBÞ
� �T � UBðxBÞ

� �T
0 � � � 0

h i
: (38)

3. String-damper coupling

For string-damper coupling, continuity of the string’s

displacement YSðxD; tÞ with that of the damper YDðrs; tÞ
is assumed, xD being the location of the damper on the

string,

YSðxD; tÞ � YDðxD; tÞ ¼ 0; (39)

USðxDÞ
� �T

qSðtÞ � qDðtÞ ¼ 0: (40)
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Equation (40) leads to the following matrix AD and vec-

tor bD ¼ 0, where USðxDj
Þ is the mode shape of the string

coupled with the nth damper at the xDj
location:

AD ¼

USðxD1
Þ

� �T
0 � � � 0 �1 0 � � � 0

USðxD2
Þ

� �T
0 � � � 0 0 �1 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

USðxDND
Þ

h iT
0 � � � 0 0 0 ..

.
�1

2
66666664

3
77777775
:

IV. SIMULATION AND EVALUATION OF THE
CLAVICHORD MODEL

In this section, assessment of the model is performed along

three lines—string motion, tangent-string interaction, and

bridge vibration—by comparing simulated and experimental

data. A finite difference approach is chosen for simulation of

the one-string model developed in Sec. III, using the experi-

mental data of Sec. II. The time step for simulation is chosen

according to an energy analysis of the simulation (using

Ns¼ 150 string modes). This energy analysis studies the work

done by the key-tangent subsystem compared to total energy of

the coupled system for different time steps. The energy pro-

vided to the system is the work Ee ¼
PN

n¼1 Ee;n done by the

tangent, with the modal work Ee;n,

Ee;nðtÞ ¼
ðT

0

Fext;nðtÞ _qk
nðtÞdt: (41)

The sum of all modes’ energy of the string, of the sys-

tem tangent-key, of the damper, and of the bridge gives the

total energy of the modeled system. Results reported in

Fig. 5 show that the total energy converges toward the key-

tangent subsystem work as the time step decreases.

Given the energy analysis of the simulated model, a

time step of Dt ¼ 2� 10�6 s has been chosen to ensure a

realistic simulation. A smaller time step gives a better fit

between the work done by the key-tangent subsystem and

the total energy of the coupled system, but it does not

greatly improve the auditory or visual quality of the simula-

tion when it greatly increases the computational load.

Assessment of the model is performed in three steps:

(1) visualization of string motion; (2) tangent-string interac-

tion and dynamics of the clavichord; and (3) bridge vibra-

tions and comparison with experimental data.

A. String motion

The string motion of the clavichord is shaped by the spe-

cific excitation mechanism of the instrument. Simulation of

the G#3 string motion is displayed in Fig. 6, in response to a

4.2 N excitation force applied on the key. The same data are

better visualized in the associated video Mm. 3, displaying

evolution of the string and tangent motions in time. Figure

6(a) represents the initial 4 ms, i.e., the beginning of the

motion. The tangent (represented by circles at x¼ 0.6 m,

sampled with a period of 0.05 ms) comes in contact with the

string and lifts the string to a maximum. When the tangent

strikes the string, an angular point is created and propagates

to the bridge. At the same time, the string is uplifted by the

tangent. After the arrival of the angular point at the bridge, it

is reflected back and then reflected again by the tangent. As

the mechanical impedance of the bridge and that of the tan-

gent are high compared to the string mechanical impedance,

most of the wave energy is reflected. Vibratory amplitude

(then the sound amplitude level) depends on the angle of the

angular point and then on the ratio of wave velocity in the

string and tangent velocity, as discussed in Ref. 8, and then

on the steepness of the tangent motion slope. In Fig. 6(b), the

string motion history is displayed between 7 and 57 ms (sam-

pled with a period of 0.5 ms). The low frequency (81 Hz)

oscillation of the key-tangent subsystem because of the elas-

ticity of the string is observed. Figure 6(c) shows vibration of

the sympathetic part of the string between the bridge and tun-

ing pin, between 9 and 17 ms (sampled with a period of

0.05 ms). Note that this vibration is 2 orders of magnitude

lower than the played part of the string, between 10�5 and

10�6 m, and that the string motion looks rather disorganized

compared to the more regular motion between the tangent

and bridge pin. This figure and associated video (Mm. 3) rep-

resent the first visualization of simulated clavichord string

motion to the best of our knowledge. Comparison with high-

speed videos of the string motion in the vicinity of the tan-

gent40 shows good agreement with the simulation.

Mm. 3. Video of the simulated clavichord string

displacement and velocity at the top and at the

bottom respectively. This is a file of type “mov”

(17.76 MB).

B. Tangent-string dynamics

Tangent-string dynamics is an essential feature of the

clavichord dynamics, tangent velocity and displacement
FIG. 5. (Color online) Convergence of the total mechanical energy of the

system compared to the work done by the tangent.
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being the main control parameters for the performer.

Figure 7 shows the velocity of the contact point between the

tangent and the key. As expected,8 the key-tangent system

oscillates, because of the string elastic reaction to the tan-

gent uplift. The simulated oscillation frequency is 81 Hz

[peak velocity 1.279 m s�1, Fig. 7(a)], compared to the

40 Hz measured oscillation frequency [peak velocity

1.135 m s�1, Fig. 7(b)]. The vertical tangent velocity is mea-

sured using a Br€uel & Kjær (Nærum, Denmark) 4374 minia-

ture high-sensitivity accelerometer attached to the key, close

to the tangent, and a conditioning amplifier, Br€uel & Kjær

2635. With an accelerometer mass of ’ 0.75 g and a key

mass of ’ 20 g, the mass weighting effect of the accelerom-

eter is neglected. This frequency difference could be

explained by the lack of finger weight in the model. Finger

weight would provide additional mass to the key-tangent

subsystem, decreasing its oscillation frequency. In this

“light key” simulation, the key-tangent subsystem modal

mass is 1.17 � 10�2 kg, with a damping coefficient of 2.5 kg

s�1. A “heavy key” simulation [Fig. 7(c)], where the key-

tangent subsystem modal mass becomes 2.87 � 10�2 kg and

its damping coefficient is 3.5 kg s�1, is consistent with mea-

surements. Because the key is heavier in this case, the tan-

gent impact velocity decreased (peak velocity 0.928 m s�1).

Figure 8 shows the effect of the tangent uplift on string

tension. Simulated tangent uplift changes the measured41

fundamental frequency. This is consistent with measured

data and quasi-static modeling results published earlier.8

The tangent displacement controls pitch.

To study the effect of tangent velocity on acceleration

at the bridge, the force Fext applied on the key-tangent

subsystem is varied. The impact velocity and the average

acceleration are computed by the model. Similarly to the

SPL, the acceleration level is computed as the logarithm of

acceleration integrated over 250 ms. Figure 9 shows a linear

relationship between the logarithm of the impact velocity

and the acceleration level in dB. This is in good agreement

with experimental results obtained for impact velocity and

SPL and with predictions by a linear model of string-tangent

dynamics.8 Playing faster results in playing louder.

The influence of the impact velocity on the timbre of

the bridge acceleration is studied. Spectral slopes of the

acceleration spectrum for different impact velocities of the

key-tangent subsystem (0.4433, 0.535, 0.622, 0.698, 0.769,

0.834, 0.894, and 0.951 m s�1) are presented in Fig. 10. Two

effects are noticeable. First, increasing the excitation force

leads to increasing the static displacement of the string,

hence the fundamental frequency. This accounts for the fre-

quency shift of the partials in Fig. 10. Second, the spectral

slopes for the different spectra remain on average identical.

This spectral slope of the simulated bridge acceleration is

consistent with the SPL spectral slope variation with respect

to the tangent impact velocity reported earlier.8 Playing

louder does not greatly change the clavichord’s timbre.

C. Bridge vibration

Bridge vibration assessment is essential, because bridge

vibration results in soundboard vibration and then sound

radiation. For assessment of the model, simulated and mea-

sured bridge motions are compared. A robotic finger42 is

used for measurement. The robotic finger presses the key

FIG. 6. (Color online) History of the transverse motion for the G#3 string. x axis: time; y axis: string length; z axis: transverse string motion. (a) Full string

between t¼ 10.0 ms and t¼ 14.0 ms; (b) full string between t¼ 7.0 ms and t¼ 57.0 ms; (c) sympathetic part alone, between t¼ 9.0 ms and t¼ 17.0 ms.
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following a programmed vertical motion for the string under

study. All other strings are muffled using felt strips.

Measurement of acceleration at the bridge pin follows

the procedure described in Sec. II E. The first simulation

takes into account all the bridge modes identified in

Sec. II E up to 3500 Hz. The second simulation takes into

account the first 31 identified bridge modes, leading to a

modal truncation of the bridge at 600 Hz. Measured and

simulated signal waveforms are displayed in Fig. 11,

together with corresponding sound example Mm. 4 (mea-

sured signal), sound example Mm. 5 (modal truncation at

3500 Hz), and sound example Mm. 6 (modal truncation at

600 Hz). Figure 12 gives a closer look at details of the three

waveforms in Fig. 11 at 0.01, 0.1, and 0.31 s, respectively.

The visual and sound results show good general agreement

between measurement and simulation. The effect of modal

truncation on the high frequency content of the simulated

waveforms is clearly observed. The main difference

between measurement and simulation is observed in the

attack transient. This could be explained by the structural

noise noticeable in a real clavichord but not taken into

account in the model. Structural noise results from the shock

of the tangent on the string, which excites all the case of the

instrument, and coupling of the whole the string band

through the damper (often coined as “drum noise”).

Mm. 4. Sound of the measured acceleration at the G#3

string/bridge coupling point. This is a file of type

“wav” (101 KB).

Mm. 5. Sound of the simulated acceleration at the G#3

string/bridge coupling point with a modal

truncation at 3500 Hz. This is a file of type “wav”

(196 KB).

Mm. 6. Sound of the simulated acceleration at the G#3

string/bridge coupling point with a modal

truncation at 600 Hz. This is a file of type “wav”

(196 KB).

FIG. 7. Comparison of simulated and measured velocity at the tangent-

string contact point. (a) “Light key” simulation; (b) measurement; (c)

“heavy key” simulation.

FIG. 8. (Color online) (a) Dynamic tension of the string (red) and corresponding fundamental frequency (blue) for a 0.5 s note; (b) zoom of this same

dynamic tension of the string in the first 0.1 s.

FIG. 9. (Color online) Logarithmic bridge acceleration (ref 1 dB: 1 m s�2)

as a function of the logarithmic tangent impact velocity.
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Finally, the forces applied to the key and the response

at the bridge are analyzed with the help of Fig. 13. A step

force of 4.2 N is applied on the key for 1 s. The constraint

force at the contact point between the tangent and strings is

computed. Note that the tangent force is lower than the force

applied to the key because of the leverage ratio of the pivot-

ing key (since xf � xp is smaller than xp � xtg); see

Fig. 13(c). Two conditions are studied in the simulation

with and without the damper subsystem. Figure 13(b) shows

the simulated force at the bridge. As expected, the force is

lowered during the tone because the tangent lifts the string

and then releases the string pressure on the bridge. When

the damper subsystem is removed, the string appears less

constrained, and the force lowering is higher. String vibra-

tion is apparent in the force signal. Figure 13(a) shows the

vibration displacement. As expected, the string is raised in

response to the tangent lift and raised higher when the

dampers are withdrawn. The vibratory magnitude is surpris-

ingly low (a maximum of about 0.015 mm). For assessment,

displacement measurements are performed on the G#3 string

using a Keyence (LJ-V7060) profilometer. The same order

of magnitude is observed: a bridge lift of 0.010–0.020 mm

and a maximal vibratory amplitude of about

0.010–0.015 mm, a result that is in good agreement with the

simulation. After the key release, the tangent loses contact

with the string. The remaining vibration after the key release

corresponds to the sympathetic vibration between the bridge

and tuning pin and, in the non-damped situation, to the

vibration of all the length of the string. In this latter situa-

tion, the magnitude is larger.

FIG. 12. (Color online) Bridge acceleration waveforms at different times:

measurement in blue, simulation (3500 Hz modal truncation) in red, and

simulation (600 Hz modal truncation) in black; (a) from t¼0.01 s to t¼0.04

s; (b) from t¼0.1 s to t¼0.14 s; (c) from t¼0.31 s to t¼0.34 s.

FIG. 10. (Color online) Logarithmic spectral magnitude of bridge accelera-

tion (ref 1 dB: 1 m s�2) for different impact velocity of the key-tangent sub-

system with the average spectral slope.

FIG. 11. Bridge acceleration waveforms (1 s). (a) Measurement; (b) simula-

tion (3500 Hz modal truncation); (c) simulation (600 Hz modal truncation).
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V. CONCLUSION AND PERSPECTIVES

Time-domain physical simulation of a simplified clavi-

chord model is developed in this paper, together with mea-

surements on a functional instrument. The clavichord is

considered as a constraint system made of four vibratory

coupled subsystems: key-tangent, string, damper, and

bridge-soundboard. In the first part, modal, dynamic, and

motion parameters for the four subsystems are measured on

the clavichord under study. Various measurement techni-

ques and devices are used: experimental modal analysis for

the bridge, soundboard, and key (accelerometers and impact

hammer); string damping characteristics (isolated string

bench and optical forks); tangent and string motions (accel-

erometer and laser vibrometer); and applied force on the key

(robotic finger). These experimental results are useful for

simulation assessment in this paper as well as for reference

for future studies of other instruments. The second part is

devoted to simulation. The U–K formulation is chosen

because of its compatibility with a modal representation for

coupled vibratory subsystems. Modal representations for the

string, bridge, key-tangent, and damper subsystems are

developed. Another key point in this work is dynamic

modeling of geometrical non-linear forces resulting from

the string uplift by the tangent, with the help of the

Kirchoff–Carrier model. Conditions of continuity in dis-

placement between each subsystem are considered to derive

the coupling matrix of the constraint system. String excita-

tion is obtained by coupling the key-tangent subsystem and

the string at the moment of contact. The constraint force

uplifts the string and sets the string into vibration. Coupling

between the string and the key-tangent subsystem requires a

stabilization technique to correct constraint violation for the

displacement and the velocity because two subsystems are

not exactly in the same position at the contact moment. In

the third part, simulation results are compared with experi-

mental results. A suitable time step for time-domain simula-

tion is chosen according to an energy convergence analysis.

The key-tangent and string dynamic of the model is com-

pared to measurements. Low frequency oscillation and

dynamic tension variation of this subsystem are successfully

rendered by the model. This is on the side of the performer’s

fingers. Simulated string motion is realistic, and the associ-

ated video showing velocity and displacement of the simpli-

fied model is in our opinion the highlight of the present

paper. Bridge motion can be considered as the source of the

radiated sound. Realistic force, displacement, and accelera-

tion waveforms (with associated sound examples) are

obtained in response to the force applied on the key. This is

on the side of the performer’s ears. Results on the dynamics

of the clavichord reported earlier in the literature are found

in the simulation: linear relationship between the bridge log

acceleration and log peak tangent velocity, pitch variation as

a function of key uplift height, and bridge acceleration with

almost constant spectral slope for different tangent impact

velocities.

A simplified one-string instrument is simulated here.

Important vibro-acoustic characteristics of the clavichord

are therefore missing and must be worked out. For most

instruments, the tangent strikes a choir of unison strings.

This influences considerably the clavichord sound, as the

two unison strings are not struck exactly at the same time

by the tangent. The sound of the clavichord is influenced

by the vibration of the sympathetic strings, creating a

reverberation effect and sometimes “wolf” notes. Sound

radiation by the soundboard, reflection by the lid, and

structural noise must be studied. Needless to say, a full

model of the instrument should include all the strings. We

believe the approach presented here forms a solid basis

for such a project, aiming at a fully parametric physical

clavichord model that would be desirable for historical

instrument simulation and analysis, performance studies,

and new music instrument design.
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