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Summary
In the recorder, variation in blowing pressure can produce changes between playing regimes and thus jumps from
one note to another. In this paper, such transitions are compared for a recorder played by an experienced player,
a person with no playing experience, and an artificial mouth. The experienced player is observed to shift regime
change thresholds up to 240% and 292% compared to the artificial mouth and the non musician (respectively),
and thus to enlarge the control of nuances and spectrum. The hypothesis that the dynamics (i.e. rate of change) of
the blowing pressure influences regime change thresholds is tested experimentally using an artificial mouth and
numerically through time-domain simulations of a physical model of the instrument. Regime change thresholds
are compared for both linearly varying blowing pressure profiles with different slopes and for piecewise linear
ramps of the blowing pressure (including a slope change). The results highlight a strong dependence of thresholds
on the blowing pressure dynamics. A phenomenological model of the register change that predicts regime change
as a function of the rate of change of the blowing pressure is proposed. It gives good agreement with experimental
data and simulations.

PACS no. 43.25.Ts, 43.75.-z, 43.75.Ef, 43.75.Qr, 43.75.Zz

1. Introduction and problem statement

The phenomenon of register change is well known in
recorder-like instruments playing: occuring when the mu-
sician blows hard enough in the instrument, it corresponds
to a jump between two periodic oscillation regimes syn-
chronised on different resonance modes of the instrument.
Thus, a jump from the first register to the second regis-
ter (synchronised on the first and the second resonance
modes, respectively) is characterised by a frequency leap
approximately an octave higher (see for example [1]).
Register change is known to be accompanied by hystere-
sis (see for example [1, 2, 3, 4]): the blowing pressure
at which the jump between two registers occurs (the so-
called regime change threshold) is higher for rising pres-
sures than for diminishing pressures. As it is related to the
selection, through the control of the blowing pressure, of
the note played by the instrument, the phenomenon of reg-
ister change is particularly important for recorder players.

Received 21 March 2014,
accepted 27 August 2014.
∗ currently at: Gipsa-lab, CNRS, UMR 5216, Grenoble INP, Université
Joseph Fourier, Université Stendhal, Grenoble Campus, 11 rue des Math-
ématiques, BP 46, 38402 Saint Martin d’Héres Cedex, France

A larger hysteresis is moreover related to a greater free-
dom in terms of musical performance: it allows both to
play forte on the first register and piano on the second reg-
ister, allowing a wider control in terms of nuance and tim-
bre.

Some studies focused on both the prediction and the ex-
perimental detection of regime change thresholds [1, 2, 3].
Other studies focused on the influence of different parame-
ters on regime change thresholds, such as the geometrical
dimensions of channel, chamfers and excitation window
of recorders or organ flue pipes [5, 6, 7], the importance of
nonlinear losses [3], or the convection velocity of pertur-
bations on the jet [3].

Coltman [1, 8] has shown that the study of the lin-
earised model allows to determine the auto-oscillation
conditions on the different modes, and thus partially ex-
plains the hysteresis phenomenon. A first attempt to ex-
plain and predict the register change and hysteresis phe-
nomena through an analysis of the non linearised model
for flutes has been proposed by Sawada and Sakaba [2].
However, their results have not been validated through
comparison with experimental data. More recent studies
have demonstrated that the resolution of the complete
non linear model through numerical methods dedicated to
computation of periodic solutions allows to explain and
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Figure 1. Oscillation frequency with respect to the blowing pres-
sure, for the F4 fingering of an alto Zen On recorder, played by
an experienced recorder player, a non musician and an artificial
mouth. Points around 350 Hz and 740 Hz correspond to the first
and second register, respectively.

predict, under quasi-static hypothesis, the hysteresis as-
sociated to register change [9]. Finally, it seems that few
studies have focused, in terms of regime change thresh-
olds, on other control parameters (i.e. parameters related
to the musician) than the slowly varying blowing pressure.

Since it has important musical consequences, one can
wonder if recorder players develop strategies to change
the values of regime change thresholds and to maximize
the hysteresis. To test this hypothesis, increasing and de-
creasing profiles of blowing pressure (crescendo and de-
crescendo) were performed on the same alto recorder and
for a given fingering (corresponding to the note F4), by an
experienced recorder player, a non player, and an artificial
mouth [10]. Both experienced musician and non musician
have been instructed to stay as long as possible on the first
register and on the second register for crescendo and de-
crescendo respectively. The different experimental setups
will be described in Section 2.

The fundamental frequency of the sound is represented
with respect to the blowing pressure in Figure 1. The musi-
cian is observed to reach increasing and decreasing regime
change thresholds respectively 213% higher and 214%
higher than the artificial mouth. On the other hand, differ-
ences between the non musician and the artificial mouth
are of 9% for the increasing threshold and 32% for the
decreasing threshold. As highlighted in Figure 2, similar
comparisons on other fingerings (G4, A4, Bb

4 and B4) show
that thresholds reached by the musician are at least 95%
higher and up to 240% higher than thresholds observed on
the artificial mouth. By contrast, thresholds obtained by
the non musician are at most 13.3% lower and 29% higher
than thresholds of the artificial mouth. For these increasing
thresholds, the values observed on the non musician during
the different realisations vary between 6% of the mean val-
ues represented in Figure 2 (case of the Bb

4 fingering) and
33% of the mean values (case of the F4 and G4 fingerings).
In the same way, for the experienced recorder player, the
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Figure 2. Increasing pressure thresholds corresponding to the
jump from the first to the second register of an alto recorder
played by an experienced recorder player, a non musician and
an artificial mouth, for five fingerings.
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Figure 3. Hysteresis on the jump between the two first registers
of an alto recorder played by an experienced recorder player, a
non musician and an artificial mouth, for five fingerings.

values observed for the different realisations vary between
5% (F4 fingering) and 21% (Bb

4 fingering) of the mean
values.

Figure 3 presents the comparison between the experi-
enced recorder player, the non musician and the artificial
mouth in terms of hysteresis. For the three cases, the differ-
ence between the thresholds obtained performing increas-
ing and decreasing blowing pressure ramps are represented
for the five fingerings studied. The musician is observed
to reach hysteresis between 169% and 380% wider than
the artificial mouth for the F4, G4, A4 and Bb

4 fingerings,
and up to 515% wider for the B4 fingering. The hystere-
sis observed for the non musician are between 27% and
233% wider than those obtained with the artificial mouth.
It is worth noting that the maximum relative difference of
233% is obtained for the B4 fingering. For all the other fin-
gerings, the relative differences with the artificial mouth
remain between 27% and 65%. In all cases, the hystere-
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sis obtained by the experienced recorder player are at least
84% wider than that observed for the non musician.

As a first conclusion, the behaviour of a given instru-
ment played by the artificial mouth and by a non musician
can be considered not significantly different in terms of
increasing regime change thresholds. In terms of hystere-
sis, if the results are not significantly different for the F4,
A4 and Bb

4 fingerings, more important differences are ob-
served for both theG4 andB4 fingerings. However, the val-
ues observed for the experienced recorder player remain
significantly higher, both in terms of thresholds and hys-
teresis, than that obtained for the non player and the artifi-
cial mouth. Contrary to the non musician, the experienced
recorder player is thus able to significantly and system-
atically modify these thresholds, and thus to enlarge the
hysteresis, which presents an obvious musical interest.

Which parameters does the musician use to control the
regime change thresholds?

Even if the influence of the blowing pressure has been
widely studied under hypothesis of quasi-static variations
[1, 2, 3, 4, 5, 6, 7, 11, 9] (called hereafter the static case),
and even if studies have focused on the measurement of
various control parameters [12, 13, 14], to the authors’
knowledge, no study has ever focused on the influence
of the blowing pressure dynamics (i.e the rate of change
of the blowing pressure with respect to time) on the be-
haviour of recorder-like instruments. Recent works have
shown the strong influence of this parameter on oscilla-
tion thresholds of reed instruments [15, 16], and thus sug-
gest that it could be a control parameter for musicians.
Moreover, the comparison between the blowing pressure
profiles observed on both the non musician and the ex-
perienced recorder player during the crescendo (see Fig-
ure 4) supports this assumption. Indeed, for the musician,
the blowing pressure profiles are smooth and appear to
be quite repeatable. The experienced recorder player thus
seems to control the evolution with time of its blowing
pressure. On the other hand, the blowing pressure profiles
observed on the non musician seem less repeatable, and
exhibit oscillations which appear to be random.

From a more theoretical point of view, as the cause of
register change in recorder-like instruments has recently
been identified as a bifurcation of the system [4, 9], corre-
sponding to a loss of stability of a periodic solution branch,
it suggests to consider the results of dynamic bifurcations
theory [17]. This theory takes into account time evolution
of the bifurcation parameters.

This paper focuses on the influence of the blowing pres-
sure dynamics on the regime change thresholds between
the two first registers of recorder-like instruments, in the
case of linearly increasing and decreasing ramps of the
blowing pressure. In Section 2, the state-of-the-art phys-
ical model for recorder-like instruments is briefly pre-
sented, as well as the instrument used for experiments,
and the numerical and experimental tools involved in this
study. Experimental and numerical results are presented in
section 3, highlighting the strong influence of the slope of
a linear ramp of the blowing pressure on the thresholds. Fi-
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Figure 4. Blowing pressure profiles observed on an experi-
enced recorder player (up) and on a non musician (down), for
crescendo on different fingerings of an alto recorder. Both the ex-
perienced recorder player and the non musician were instructed
to stay as long as possible on the first register.

nally, a phenomenological modelling of regime change is
proposed and validated in Section 4, which allows to pre-
dict the values of regime change thresholds and associated
hysteresis in the case of a time-varying blowing pressure.

2. Experimental and numerical tools

In this section, experimental and numerical tools used
throughout the article are introduced.

2.1. Measurements on musicians

For the present study, an alto Bressan Zen-On recorder
adapted for different measurements and whose geometry
is described in [18] has been played by the professional
recorder player Marine Sablonnière. As illustrated in Fig-
ure 5, two holes have been drilled to allow a measurement
of both the blowing pressure Pm in the musician’s mouth,
through a capillary tube connected to a pressure sensor
Honeywell ASCX01DN, and the acoustic pressure in the
resonator (under the labium), through a differential pres-
sure sensor Endevco 8507C-2.

2.2. Pressure controlled artificial mouth

Such experiments with musicians do not allow a sys-
tematic and repeatable exploration of the instrument be-
haviour. To play the instrument without any instrumen-
talist, a pressure controlled artificial mouth is used [10].
This setup allows to freeze different parameters (such as
the configuration of the vocal tract or the distance between
the holes and the fingers) which continuously vary when a
musician is playing. Compared to other blowing machines
used for example in [1, 2, 3], the particularity lies here in
the ability to control the blowing pressure in a very precise
way. As described in Figure 6, a servo valve connected
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Figure 5. Experimental setup with the adapted alto Zen-On
recorder, allowing the measurement of both the pressure in the
mouth of the recorder player and the acoustic pressure under the
labium.

Figure 6. Schematic representation of the principle of the artifi-
cial mouth. The opening of the servo valve, controlling the flow
injected in the mouth, is adapted every 40 µs in order to mini-
mize the difference between the measured and the desired values
of the mouth pressure.

to compressed air controls the flow injected in the instru-
ment through a cavity representing the mouth of the mu-
sician, whose volume (about 30 cm3) corresponds to that
of a human vocal tract [10]. Every 40 µs, the desired pres-
sure (the target) is compared to the pressure measured in
the mouth through a differential pressure sensor endevco
8507C-1. The electric current sent to the servo valve, di-
rectly controlling its opening and thus the flow injected in

Figure 7. Schematic representation of the jet behaviour, based
on Fabre in [21]. (a) Perturbation of the jet at the channel exit
by the acoustic field present in the resonator. (b) Convection and
amplification of the perturbation, due to the unstable nature of
the jet. (c) Jet-labium interaction: oscillation of the jet around
the labium, which sustains the acoustic field.

the mouth, is then adjusted using a Proportional Integral
Derivative controller scheme. It is implemented on a DSP
card dSpace 1006 [10].

2.3. Physical model of the instrument

In parallel with experiments, the behaviour of the state-
of-the-art model for recorder-like instruments is studied
through time-domain simulations and numerical continu-
ation. The results are qualitatively compared below to ex-
perimental data, giving rise to a better understanding of the
different phenomena involved.

As for other wind instruments, the mechanism of sound
production in recorder-like instruments can be described
as a coupling between a nonlinear exciter and a linear, pas-
sive resonator, the later being constituted by the air col-
umn contained in the pipe [19, 20]. However, they differ
from other wind instruments in the nature of their exciter:
whereas it involves the vibration of a solid element for reed
and brass instruments (a cane reed or the musician’s lips),
it is constituted here by the nonlinear interaction between
an air jet and a sharp edge called labium (see for example
[21]), as illustrated in Figure 7.

More precisely, the auto-oscillation process is modeled
as follows: when the musician blows into the instrument,
a jet with velocity Uj and half width b is created at the
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channel exit. As the jet is naturally unstable, any pertur-
bation is amplified while being convected along the jet,
from the channel exit to the labium. The convection veloc-
ity cv of these perturbations on the jet is related to the jet
velocity itself through: cv ≈ 0.4Uj [22, 23, 24]. The con-
vection from the channel exit to the labium introduces a
delay τ in the system, related both to the distance W be-
tween the channel exit and the labium (see Figure 7) and
to the convection velocity cv through: τ = W/cv . Due to
its instability, the jet oscillates around the labium with a
deflection amplitude η(t), leading to an alternate flow in-
jection inside and outside the instrument. These two flow
sources Qin and Qout in phase opposition (separated by a
small distance δd, whose value is evaluated by Verge in
[25]) act as a dipolar pressure source difference Δpsrc(t)
on the resonator [1, 25, 26], represented through its admit-
tance Y (ω).

The acoustic velocity vac(t) of the waves created in the
resonator disrupts back the air jet at the channel exit. As
described above, this perturbation is convected and am-
plified along the jet, toward the labium. The instability
is amplified through this feedback loop, leading to self-
sustained oscillations. This mechanism of sound produc-
tion can be represented by a feedback loop system, repre-
sented in Figure 8.

According to various studies describing the different
physical phenomena involved ([6, 22, 23, 24, 27] for the
jet, [1, 25, 26] for the aeroacoustic source), the state-
of-the-art model for recorder-like instruments [21] is de-
scribed through system 1, in which each equation is re-
lated to a given element of the feedback loop system of
Figure 8,

η(t) =
h

Uj
eαiW vac(t − τ), (1)

Δp(t) = Δpsrc(t) + Δplos(t)

=
ρδdbUj

W

d

dt
tanh

η(t) − y0

b
(2)

− ρ

2
vac(t)
αvc

2

sgn vac(t) ,

Vac(ω) = Y (ω) · P (ω)

=
a0

b0jω + c0
(3)

+
p−1

k=1

akjω

ω2
k − ω2 + jω ωk

Qk

P (ω).

In these equations, αi is an empirical coefficient charac-
terizing the amplification of the jet perturbations [22, 27],
ρ is the air density, and y0 the offset between the labium
position and the jet centerline (see Figure 7). Vac and P
are respectively the frequency-domain expressions of the
acoustic velocity at the pipe inlet vac(t) and the pressure
source Δp(t).

In the second equation, the additional term Δplos =
−(ρ/2)(vac(t)/αvc)2 sgn(vac(t)) models nonlinear losses
due to vortex shedding at the labium [29]. αvc is a vena

Figure 8. Basic modelling of sound production mechanism in
recorder-like instruments, as a system with a feedback loop
[28, 21].

contracta factor (estimated at 0.6 in the case of a sharp
edge), and sgn represents the sign function.

The admittance Y (ω) is represented in the frequency-
domain as a sum of resonance modes, including a mode
at zero frequency (the so-called uniform mode [28]). The
coefficients ak, ωk and Qk are respectively the modal am-
plitude, the resonance pulsation and the quality factor of
the kth resonance mode, ω is the pulsation, and a0, b0 and
c0 are the coefficients of the uniform mode. For the differ-
ent fingerings of the recorder used for experiments, these
coefficients are estimated through a fit of the admittance.
These admittances are estimated through the measurement
of the geometrical dimensions of the bore of the recorder
and the use of the software WIAT [30]. The length cor-
rections related to the excitation window of the recorder
(see Figure 7) are subsequently taken into account using
the analytical formulas detailed in chapter 7 of [28].

2.3.1. Numerical resolution methods
Time-domain simulations of this model are carried out
through a classical Runge-Kutta method of order 3, im-
plemented in Simulink [31]. A high sampling frequency
fs = 23× 44100 Hz is used. This value is chosen both be-
cause the solution is not significantly different for higher
sampling frequencies, and because it allows an easy re-
sampling at a frequency suitable for audio production sys-
tems.

In parallel, equilibrium and periodic steady-state solu-
tions of the model are computed using orthogonal col-
location (see for example [32]) and numerical continua-
tion [33]. Starting from a given equilibrium or periodic
solution, continuation methods, which rely on the implicit
function theorem [34], compute the neighbouring solution,
i.e the solution for a slightly different value of the param-
eter of interest (the so-called continuation parameter), us-
ing a prediction-correction method. This iterative process
is schematically represented in Figure 9. It thus aims at
following the corresponding branch (that is to say “fam-
ily”) of solutions when the continuation parameter varies.
For more details on these methods and their adaptation to
the state-of-the-art recorder model, the reader is referred
to [35, 36] and [9]. The stability properties of the different
parts of the branches are subsequently determined using
the Floquet theory (see for example [37]).
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For a given dynamical system, the computation of both
the different branches of equilibrium and periodic solu-
tions and their stability, here achieved with the software
DDE-Biftool [38, 39, 36], leads to bifurcation diagrams.
Such diagrams ideally represent all the branches of equi-
librium and periodic solutions as a function of the contin-
uation parameter. Moreover, they provide specific infor-
mation on unstable parts of the branches, coexistence of
different solutions, and bifurcations arising along the dif-
ferent branches. It is not possible to access this information
experimentally or through time integration methods.

Thereby, a bifurcation diagram provides a more global
knowledge on the different possible solutions of the sys-
tem, and an easier interpretation of different phenomena
observed experimentally or in time-domain simulations,
as illustrated for example in [40, 41, 9]. This will be il-
lustrated by Figure 12 provided in section 3, which repre-
sents such a diagram of the state-of-the-art model of flute-
like instruments, in terms of oscillation frequency of the
periodic solutions with respect to the blowing pressure.

3. Linear ramps of the blowing pressure:
experimental and numerical results

3.1. Influence of the slope of blowing pressure
ramps on thresholds

As highlighted in Section 1, important differences arise,
in terms of regime change thresholds and hysteresis, be-
tween experienced recorder player and artificial mouth or
non musician, which remain unexplained. Recent works
[15, 16] have demonstrated the strong influence of the dy-
namics of control parameters on the oscillation threshold
of reed instruments. Particularly, it has highlighted, in such
instruments, the phenomenon of bifurcation delay, corre-
sponding to a shift of the oscillation threshold caused by
the dynamics of the control parameter [17]. Although we
focus here on transitions between the two first registers
(i.e. between two different oscillation regimes), and al-
though recorder-like instruments are mathematically quite
different dynamical systems from reed instruments, these
former studies suggest that the temporal profile Pm(t) of
the pressure dynamics could influence the regime change
thresholds. We focus in this Section on the comparison of
regime change thresholds between the static case and the
dynamic case, the latter corresponding to a time varying
blowing pressure.

To test this hypothesis, linearly increasing and decreas-
ing blowing pressure ramps Pm(t) = Pini + a · t, with dif-
ferent slopes a, have been run both through time-domain
simulations and experiments with the artificial mouth. Fig-
ure 10 represents, for the F4 fingering, the dynamic pres-
sure thresholds Pdyn corresponding to the jump between
the two first registers, with respect to the slope a. The pos-
itive and negative values of a correspond to increasing and
decreasing ramps of Pm(t), respectively. For each value of
a, the experimental threshold is a mean value calculated
for three realisations of the considered ramps. In this pa-
per, the value of Pdyn is determined through a fundamental

Figure 9. Schematic representation of the principle of numerical
continuation through a prediction-correction algorithm [33, 38].
Starting from a known part of the branch, the neighbouring solu-
tion (for a slightly different value of the continuation parameter
λ) is predicted and corrected. By succesive iterations, it leads to
the computation of the complete solution branch of equilibrium
or periodic solutions. x represents a characteristic of the solution,
such as its frequency or its amplitude.

frequency detection using the software Yin [42]: Pdyn is
defined as the value of Pm at which a jump of the fun-
damental frequency is observed. The temporal resolution
of the detection is 0.0016 s for experimental signals and
0.0007 s for simulation signals, which corresponds to a
resolution of 0.8 and 0.36 Pa (respectively), in the case of
a slope a = 500 Pa/s of the blowing pressure. Moreover,
for a given value of a and a given fingering, the thresholds
measured for the different realisations differ typically no
more than 5% from their mean value.

Despite the dramatic simplifications of the model, these
first results presented in Figure 10 higlight that the real
instrument and the model present similar qualitative be-
haviours. Surprisingly enough, the behaviours observed
numerically in time-domain simulation and experimen-
tally with the artificial mouth are also quantitatively simi-
lar, with typical relative differences between 3% and 28%
on the thresholds observed for rising pressure (called in-
creasing pressure threshold Pdyn 1→2). For the decreas-
ing pressure threshold Pdyn 2→1, observed for diminishing
pressure, the difference is more important, with a typical
relative deviation of about 50%.

Furthermore, the strong influence of a on both Pdyn 1→2

and Pdyn 2→1 is clearly pointed out: with the artificial
mouth, |a| = 400 Pa/s leads to a value of Pdyn 1→2 45%
higher than |a| = 10 Pa/s, and to a value of Pdyn 2→1

16% lower. Similarly, for time-domain simulations, |a| =
400 Pa/s leads to a value of Pdyn 1→2 15.5% higher and
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Figure 10. Dynamic regime change threshold between the two
first registers of the F4 fingering, with respect to the slope a of
linear ramps: artificial mouth and time-domain simulation.

to a value of Pdyn 2→1 18% lower than |a| = 10 Pa/s. As
Pdyn 1→2 and Pdyn 2→1 are respectively increased and de-
creased, increasing a thus enlarges the hysteresis. This
can be compared (at least qualitatively) with phenomena
observed on an experienced recorder player, presented in
Section 1.

Figure 11 represents, as previously, the mean value of
the regime change thresholds Pdyn 1→2 and Pdyn 2→1 ob-
tained for three experiments, with respect to the slope
a, for the other fingerings already studied in Section 1.
It higlights that the behaviour observed in Figure 10 for
the F4 fingering looks similar for other fingerings of the
recorder. Indeed, depending on the fingering, the increase
of |a| from 20 Pa/s to 400 Pa/s leads to an increase of
Pdyn 1→2 between 13% and 43% and to a decrease of
Pdyn 2→1 from 3% to 15%. Again, these results can be qual-
itatively compared with the results presented in Section 1
for an experienced recorder player.

3.2. Influence of the slope of blowing pressure
ramps on oscillation frequency and amplitude

As observed for the oscillation threshold in clarinet-like
instruments [15], we show in this section that a modifi-
cation of the regime change threshold does not imply a
strong modification of the characteristic curves, observed
in the static case, linking the oscillation amplitude and the
oscillation frequency to the blowing pressure. For numer-
ical results, this feature can be easily illustrated through
a comparison between the results of time-domain simu-
lations and the bifurcation diagrams obtained through nu-
merical continuation. This is done in Figure 12, in terms of
fundamental frequency with respect to the blowing pres-
sure Pm, for modal coefficients corresponding to the G4

fingering. In this figure, the two periodic solution branches
correspond to the first and the second registers, and solid
lines with crosses and dashed lines represent stable and
unstable parts of the branches, respectively. As the compu-
tation of such a bifurcation diagram relies on the static bi-
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Figure 11. Transition between the two first registers of an alto
recorder played by an artificial mouth, for five different finger-
ings: representation of the dynamic regime change thresholds
with respect to the slope a of linear ramps of the blowing pres-
sure.
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Figure 12. Bifurcation diagram of the G4 fingering, superim-
posed with time-domain simulations of increasing linear ramps
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ing pressure Pm. For the bifurcation diagram, the two branches
correspond to the first and the second register, solid lines with
crosses and dashed lines represent stable and unstable parts of
the branches, respectively. The vertical dotted lines highlight the
static regime change thresholds Pstat 1→2 and Pstat 2→1.

furcation theory, the point where the first register becomes
unstable, at Pm = 311.5 Pa, corresponds to the static
threshold Pstat 1→2 from first to second register. It thus cor-
responds to the threshold that would be observed, in time-
domain simulation, by choosing successive constant val-
ues of the blowing pressure, and letting the system reach
a steady-state solution (here, the first or the second regis-
ter). Similarly, the point at which the change of stability
of the second register is observed corresponds to the static
threshold from second to first register Pstat 2→1 = 259 Pa.

Figure 12 shows that for high values of a, the system
follows the unstable part of the branch corresponding to
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the first register: the maximum relative difference between
the frequency predicted by the bifurcation diagram and the
results of time-domain simulations is 9 cents. In the dy-
namic case, the system thus remains, at least for a while,
on the periodic solution branch corresponding to the “start-
ing” regime (the first register in Figure 12), after it became
unstable.

Providing, for the A fingering, the oscillation amplitude
as a function of Pm for different values of a, Figure 13
highlights that the same property is observed experimen-
tally. In both cases, the value of a considerabily alters the
register change thresholds. However, far enough from the
jump between the two registers, the oscillation amplitude
only depends on the value of Pm, and does not appear sig-
nificantly affected by the value of a.

In Figure 13, the comparison between the two slowest
ramps (20 Pa/s and 100 Pa/s) and the two others (280 Pa/s
and 340 Pa/s) is particularly interesting. Indeed, for the
two slowest ramps, an additional oscillation regime, cor-
responding to a quasiperiodic sound (called multiphonic
sound in a musical context) [7, 8, 43, 4, 44], is observed
for blowing pressure between 300 Pa and 400 Pa for a =
20 Pa/s, and between 340 and 400 Pa for a = 100 Pa/s.
As this regime does not appear for higher slopes, it high-
lights that a modification of the blowing pressure dynam-
ics can allow the musician to avoid (or conversely to favor)
a given oscillation regime.

3.3. Influence of the pressure dynamics before the
static threshold

To better understand the mechanisms involved in the case
of a dynamic bifurcation between two registers, this sec-
tion focuses on the influence, on the regime change thresh-
olds, of the evolution of Pm(t) before the static threshold
Pstat has been reached. In other words, the aim is to de-
termine whether the way Pm(t) evolves before the static
threshold is reached impacts the dynamic regime change
threshold.

To investigate this issue, different piecewise linear
ramps have been achieved both with the artificial mouth
and in time-domain simulation. As illustrated in Figure 14,
these profiles are defined for rising pressures such as
dPm/dt = a1 for Pm < Pknee and dPm/dt = a2 for
Pm > Pknee (where a1 and a2 are constants) and Pknee

is a constant that may be adjusted. For diminishing pres-
sures, they are such as dPm/dt = −a1 for Pm > Pknee and
dPm/dt = −a2 for Pm < Pknee.

3.3.1. Experimental results

Experimentally, blowing pressure profiles constituted by
two linear ramps with different slopes (|a1| = 350 Pa/s,
|a2| = 40 Pa/s) have been achieved for the G4 fingering.
The pressure Pknee at which the knee break occurs varies
between the different realisations.

Figure 15 presents these experimental results in terms
of Pdyn 1→2 and Pdyn 2→1, with respect to Pknee − Pstat.
Thereby, a zero abscissa corresponds to a change of slope
from a1 to a2 at a pressure equal to Pstat 1→2 for rising
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Figure 13. Increasing linear ramps of the blowing pressure, with
different slopes a, achieved with an artificial mouth: oscillation
amplitude observed for the A4 fingering of an alto recorder, with
respect to the blowing pressure.
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Figure 14. Schematic representation of the piecewise linear
ramps of the blowing pressure, achieved in time-domain simu-
lation and experimentally with the artificial mouth. For both in-
creasing ramps (up) and decreasing ramps (down), the slope of
the blowing pressure ramp is a1 before the value Pknee has been
reached, and a2 after Pknee has been reached.

pressure, and equal to Pstat 2→1 for diminishing pressure.
It highlights that for rising pressure, Pdyn 1→2 remains con-
stant as long as Pknee < Pstat 1→2 (i.e. for negative values of
the abscissa), and that this constant value (about 258 Pa)
corresponds to the value of Pdyn 1→2 previously observed
for a linear ramp with constant slope a2 = 40 Pa/s (see
Figure 11). Conversely, once Pknee > Pstat 1→2, the value
of Pdyn 1→2 gradually increases to reach 295 Pa, which cor-
responds to the value observed for a linear ramp with a
contant slope a1 = 350 Pa/s.

The same behaviour is observed for the decreasing
threshold: as long as Pknee > Pstat 2→1, the value of
Pdyn 2→1 is almost contant and close to that observed pre-
viously for a linear ramp of constant slope a2 = −40 Pa/s
(see Figure 11). However, for Pknee < Pstat 2→1, the value
of Pdyn 2→1 progressively decreases to about 142 Pa, which
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Figure 15. Piecewise linear ramps of the blowing pressure (a1 =
350 Pa/s and a2 = 40 Pa/s), achieved on the G4 fingering of an
alto recorder played by an artificial mouth. Ordinate: dynamic
threshold Pdyn 1→2 (up) and Pdyn 2→1 (down). Abscissa: differ-
ence between the pressure Pknee at which the knee occurs and
the static regime change threshold Pstat. Dashed lines represent
the dynamic regime change thresholds observed previously for
linear ramps of constant slope a1 and a2 respectively.

corresponds to that observed for a linear ramp of constant
slope a1 = −350 Pa/s (see Figure 11).

As a conclusion, as long as the slope break occurs be-
fore the static threshold has been reached, the dynamic
threshold is driven by the slope of the second part of the
blowing pressure profile. If it occurs just after the static
threshold has been reached, the dynamic threshold lies be-
tween the dynamic thresholds corresponding to the two
slopes of the blowing pressure profile. Finally, if the slope
break occurs, for rising pressure, at a presure sufficiently
higher (respectively lower for diminishing pressure) than
the static threshold, the dynamic threshold is driven, as ex-
pected, by the slope of the first part of the blowing pressure
profile.

3.3.2. Results of time-domain simulations

These experimentally observed behaviours are also ob-
served on numerical simulations of the model. For modal
coefficients corresponding to the G4 fingering, the com-
parison has been made between the dynamic thresholds
obtained for three different cases:
• linear increasing ramps of Pm(t), with slope a2.
• a first piecewise linear increasing ramp, with a slope

change at Pknee = 270 Pa, and a fixed value of a1 =
500 Pa/s.

• a second piecewise linear increasing ramp, with a slope
change at Pknee = 270 Pa, and a fixed value of a1 =
200 Pa/s.

It is worth noting that for the two kinds of piecewise lin-
ear ramps, Pknee is lower than Pstat 1→2, predicted by a bi-
furcation diagram at 311.5 Pa (see Figure 12). For each
case, various simulations were achieved, for different val-
ues of a2.
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Figure 16. Time-domain simulations of piecewise linear ramps
of the blowing pressure with Pknee = 270 Pa (a1 = 500 Pa/s for
squares and a1 = 200 Pa/s for circles) and of linear ramps of the
blowing pressure (crosses). Representation of the increasing dy-
namic regime change threshold Pdyn 1→2 for the G4 fingering, as
a function of a2 (slope of the second part of the blowing pressure
profile for piecewise linear ramps, and slope of the linear ramps).

Figure 16 provides the comparison of value of Pdyn 1→2

obtained for these three kinds of blowing pressure profiles,
as a function of a2. With a maximum relative difference
of 0.8%, the thresholds obtained for the piecewise linear
profiles are strongly similar to those obtained with linear
ramps. As for the experimental results, if Pknee < Pstat 1→2,
the dynamic threshold Pdyn 1→2 is thus driven by the sec-
ond slope a2 of the profile.

For the particular profile in which a1 = 500 Pa/s and
a2 = 830 Pa/s, the influence of the value of Pknee on
Pdyn 1→2 has been studied. The results are represented in
Figure 17 in the same way as the experimental results
in Figure 15. As experimentally, if Pknee < Pstat 1→2, the
value of Pdyn 1→2 is driven by a2, and a constant threshold
of about 388 Pa is observed, corresponding to the value
obtained for a linear ramp with a slope equal to a2 =
830 Pa (see figure 16). Conversely, when Pknee > Pstat1→2,
Pdyn1→2 gradually shifts to finally achieve the value of
369 Pa, equal to that oberved for a linear ramp with a slope
equal to a1 = 500 Pa/s. The dynamic threshold is then
driven by a1.

3.4. Comparison with the results of an experienced
musician

The strong influence of the dynamics of Pm(t) on thresh-
olds and hysteresis suggests, by comparison with results
presented in section 1, that musicians could use this prop-
erty to access to a wider control in terms of nuances and
timbre. However, the comparison between the musician
and the artificial mouth (see Figures 2, 3 and 11) shows
that the values of Pdyn 1→2 obtained by the musician re-
mains, for the different fingerings studied, between 61%
and 134% higher than the maximal thresholds obtained
with the artificial mouth for high values of the slope a.
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Figure 17. Time-domain simulations of piecewise linear ramps
of the blowing pressure (a1 = 500 Pa/s and a2 = 830 Pa/s), for
theG4 fingering. Ordinate: dynamic threshold Pdyn 1→2. Abscissa:
difference between the pressure Pknee at which the knee occurs
and the static regime change threshold Pstat 1→2. Dashed lines
represent the values of Pdyn 1→2 previously observed for linear
ramps of slope a1 and a2.

In the same way, the hysteresis obtained by the musician
remains between 26% and 102% wider than the maximal
hysteresis observed with the artificial mouth for the F4,
G4, A4 and Bb

4 fingerings, and up to 404% wid er for the
B4 fingering.

3.5. Discussion

These results bring out the strong influence of the dy-
namics of the blowing pressure on the oscillation regime
thresholds in recorder-like instruments. Comparisons be-
tween experimental and numerical results show that the
substantial simplifications involved in the state-of-the-art
physical model of the instrument do not prevent it to faith-
fully reproduce the phenomena observed experimentally.
Suprisingly enough, different numerical results show good
agreement not only qualitatively but also quantitatively
with the results obtained with the artificial mouth.

Moreover, both the experimental and numerical results
show that the dynamic threshold does not depend on the
dynamics of the blowing pressure before the static thresh-
old has been reached.

Although the system studied here is mathematically
very different from one that models reed instruments (see
for example [3, 45, 9]), and although focus is set here on
bifurcations of periodic solutions, results can be compared
with some phenomena highlighted by Bergeot et al. on the
dynamic oscillation threshold of reed instruments [16, 15].
As in the work of Bergeot, phenomena highlihted are not
predicted by the static bifurcation theory, often involved in
the study of musical instruments.

However, as underlined in Section 3.4, consideration of
the blowing pressure dynamics alone is not sufficient to
reach the thresholds and hysteresis obtained by an experi-
enced recorder player. Moreover, the thresholds shift ob-
served both in time-domain simulation and on the artificial

mouth are temporary, in the sense that the regime change
is delayed but can not be avoided once the static threshold
has been exceeded. In the case of the experienced recorder
player, it cannot be ruled out that the musician might be
able to maintain the oscillation on the desired regime as
long as he desires, which would correspond to a perma-
nent character of the threshold shift. Both because musi-
cians adapt permanently all the parameters available, and
because the measured blowing pressure profiles are much
more complex than those studied with the artificial mouth,
it is not possible to provide a precise answer to this issue.

The comparison between the results obtained with the
artificial mouth and with an experienced recorder player
thus suggests that experienced recorder players develop
strategies to combine the effects of the dynamics of the
blowing pressure with those of other control parameters
(such as for example the vocal tract, whose influence on
regime change thresholds has been recently studied [46])
in order to enlarge the hysteresis associated to regime
change. Moreover, the study presented here focuses on
linear profiles of the mouth pressure. As such a tempo-
ral evolution does not seem realistic in a musical context
(see Section 1 and for example [47, 13]), it would be in-
teresting to consider the effect of more complex temporal
evolutions of the blowing pressure.

These different points are thus arguments in favor of
consideration of the influence of other control parame-
ters on regime change thresholds and hysteresis. Among
others, different works on flute-like instruments [48, 46],
together with different studies on other wind instruments
[49, 50, 51, 52] suggests that the vocal tract can also influ-
ence the regime change thresholds.

4. Toward a phenomenological model of
register change

The different properties of the register change phe-
nomenon, observed both experimentally and in simula-
tions in the previous part, allow to propose a prelimi-
nary phenomenological modelling of this phenomenon.
The aim is not here to propose a method to analyse the
physical model of flute-like instruments, which allows to
explain and predict the regime change, as Coltman [1, 8],
Sawada and Sakaba [2], Auvray et al. [3] and Terrien et
al. [9]. Conversely, a phenomenological modelling of the
influence of the blowing pressure dynamics on the regime
change threshold is proposed.

4.1. Proposed model

Starting from the results presented in figures 15, 16, and
17, which lead to the conclusion that Pdyn only depends
on the dynamics of the blowing pressure after the static
threshold has been reached, this modelling is based on the
following hypothesis:
• The regime change starts when Pm(t) = Pstat.
• The regime change is not instantaneous, and has a du-

ration tdyn during which the blowing pressure evolves
from Pstat to Pdyn.
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We thus write Pdyn as the sum of the static threshold Pstat

and a correction term Pcorr related to the dynamics of the
blowing pressure,

Pdyn = Pstat + Pcorr. (4)

Based on the two hypothesis cited above, a new dimen-
sionless quantity is introduced: the fraction of regime
change ζ(t). By definition, ζ = 0 when the regime change
has not started (i.e. when Pm(t) < Pstat for rising pres-
sure and when Pm(t) > Pstat for diminishing pressure),
and ζ = 1 when the regime change is completed (i.e. when
Pm(t) = Pdyn, which corresponds to the change of funda-
mental frequency, as defined in the previous section). ζ is
consequently defined as

ζ(t) =
t

tstat

∂ζ

∂t
dt, (5)

where tstat is the instant at which Pm(t) = Pstat. Defining
the origin of time at tstat leads to t̂ = t−tstat, and thus gives

ζ(t̂) =
t̂

0

∂ζ

∂t̂
dt̂. (6)

As a simplifying assumption, it is assumed in a first stage
that the rate of change ∂ζ/∂t̂ of the variable ζ(t̂) only de-
pends on the gap ΔP (t̂) = Pm(t̂)−Pstat between the mouth
pressure Pm(t̂) and the static regime change threshold,

∂ζ

∂t̂
= f (ΔP ), (7)

where f is an unknown monotonous and continuous func-
tion.

According to the latest hypothesis, function f can be
estimated at different points through the realisation of
“steps” profiles of Pm(t), from a value lower than Pstat 1→2,
to a value larger than Pstat 1→2 (see Figure 18). Indeed, in
such a case, for a step occuring at t̂ = 0, ΔP (t̂) corre-
sponds to the difference between the pressure at the top of
the step and Pstat 1→2, and is thus constant for t̂ > 0. Con-
sequently, f (ΔP ) is constant with respect to time. From
Equations (6) and (7), one thus obtains for blowing pres-
sure steps:

ζ(t̂) =
t̂

0
f (ΔP ) dt̂

= f (ΔP )
t̂

0
dt̂ (8)

= f (ΔP ) · t̂.

Recalling that t̂dyn is the instant at which Pm(t̂) = Pdyn,
we have by definition ζ(t̂dyn) = 1, and finally obtain for
blowing pressure steps

f (ΔP ) =
1

t̂dyn
. (9)

For each value of the step amplitude, a different value of
t̂dyn is obviously measured through a frequency detection:
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Figure 18. Illustration of the step profiles of the blowing pressure
(up) achieved in time-domain simulations, of the detection of the
transient duration t̂dyn (middle) and of the corresponding acoustic
velocity signal (down).

0 50 100
0

2

4

6

8

Δ P (Pa)

1
/t

d
y
n

(s
-1

)

0 10 20 30 40
0

1

2

3

4

5

6

Δ P (Pa)

1
/t

d
y
n

(s
-1

)

F
4

fingering

Fit sqrt

G
4

fingering

Fit sqrt
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get pressure of the steps and the static threshold Pstat 1→2. Dashed
lines represent fit of the data with square root functions.

t̂dyn is defined as the time after which the oscillation fre-
quency varies no more than two times the frequency res-
olution. Therefore, successive time-domain simulations of
Pm steps (see Figure 18) with different amplitudes are car-
ried out, to determine the function f (ΔP ) through Equa-
tion (9). Such simulations have been achieved for the two
fingerings F4 and G4, in both cases for transitions from the
first to the second register. The results are represented in
Figure 19 with respect to ΔP .

In the two cases, it seems that the results follow a square
root function: the linear correlation coefficients between

310



Terrien et al.: Regime change thresholds in recorders ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 101 (2015)

ΔP and (1/tdyn)2 are of 0.96 for the F4 fingering and 0.97
for the G4 fingering. Such results thus suggest to approxi-
mate the function f through

f (ΔP ) = α (ΔP ), (10)

where the coefficient α depends on the considered finger-
ing.

4.2. Assessment of the model

To check the validity of this modelling, the case of the lin-
ear pressure ramps studied in the previous section is now
examined. In such a case, the difference between the blow-
ing pressure and the static threshold is defined through
ΔP (t̂) = a · t̂, where a is the slope of the ramp in Pa/s.
Recalling that ζ(t̂dyn) = 1 and injecting Equations (7) and
(10) in Equation (6) leads to

t̂dyn

0
f (ΔP (t̂)) dt̂ = 1,

t̂dyn

0
α ΔP (t̂) dt̂ = 1,

t̂dyn

0
α at̂ · dt̂ = 1, (11)

t̂dyn

0
t̂ dt̂ =

1
α
√
a
,

t̂dyn =
3

2α
√
a

2/3

.

Moreover, due to the expression of ΔP (t̂) in the case of
linear ramps, one can write from Equations (4) and (11)

Pcorr = Pdyn − Pstat = ΔP (t̂dyn)

= a · t̂dyn =
3
2α

a
2/3

. (12)

According to this modelling, the value of Pcorr obtained
with linear ramps should be proportional to the slope a to
the power 2/3. Time-domain simulations for linear ramps
of Pm(t) with slope a are performed for two fingerings (F4

and G4). Figure 20 represents the threshold Pdyn corre-
sponding to the end of the transition from the first to the
second register with respect to the slope a power 2/3. The
results are correctly fitted by straight lines, with correla-
tion coefficients higher than 0.99. This good agreement
with the model prediction (Equation 12) thus allows to
validate the proposed modelling of the phenomenon of
regime change. Moreover, on such a representation, the
intercept of the fit with the y-axis provides a prediction
of the static regime change threshold, which can not be
exactly determined, strictly speaking, with linear ramps
of the blowing pressure. The static thresholds thereby ob-
tained are 294 Pa and 314 Pa for the F4 and G4 finger-
ing respectively. These values present relative differences
of 0.1% and 0.8% with the thresholds of 294.3 Pa and
311.5 Pa predicted by the bifurcation diagrams computed
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Figure 20. Time-domain simulations of linear increasing ramps
of the blowing pressure, for both the F4 fingering (+) and the
G4 fingering (x): representation of the dynamic regime change
threshold Pdyn 1→2 with respect to the power 2/3 of the slope a.
Solid and dashed lines represent linear fit of the data, which both
present linear correlation coefficients with the data higher than
0.99.

through numerical continuation (see Figure 12 for the bi-
furcation diagram of the G4 fingering), which supports the
validity of the proposed modelling.

Moreover, the validity of the proposed modelling has
also been checked in the case of the piecewise linear ramps
of the blowing pressure studied in Section 3.3. For sake
of clarity, both the details of calculations and the figure
highlighting the good agreement beetwen simulation re-
sults and prediction of the model are provided in the ap-
pendix.

4.3. Case of experimental data
The experimental thresholds displayed in Figure 11 for the
five fingerings studied are represented in Figure 21 with
respect to a2/3. Similarly to Figure 20, the different curves
are correctly fitted by straight lines, with linear correla-
tion coefficients between 0.88 and 0.99. The fact that these
coefficients are, in some cases, lower than those of simu-
lations can be explained by the presence of noise and of
small fluctuations of the mouth pressure during the exper-
iment, which sometimes prevents a threshold detection as
accurate and systematic as in the case of numerical results.
However, the good agreement of the experimental results
with Equation (12) also allows to validate the proposed
phenomenological modelling of regime change.

4.4. Influence of the regime resulting from the
regime change

In the case of time-domain simulations, for the G4 finger-
ing, starting from the second register and achieving linear
decreasing ramps of Pm(t) leads to a particular behaviour.
As shown in Figure 22, Pdyn does not appear, at least in a
first stage, to be proportional to the power 2/3 of the slope.
However, this case is particular in the sense that different
oscillation regimes are reached, depending on the slope a
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Figure 22. Time-domain simulations of linear decreasing ramps
of the blowing pressure, for the G4 fingering: representation of
the dynamic regime change threshold Pdyn 2→1 with respect to the
power 2/3 of the slope a. Circles and crosses represent transi-
tions from the second register to the first register and to an ae-
olian regime, respectively. Solid and dashed lines represent lin-
ear fit of the data, which present linear correlation coefficients of
0.98 and 0.95, respectively. The dashed line indicates the pres-
sure at which the Floquet exponents of the starting regime cross
in Figure 23.

of the ramp. Thereby, as highlighted with circles in Fig-
ure 22, low values of the slope (|a| < 20 Pa/s) lead to
a transition from the second to the first register, whereas
higher values of the slope lead to a transition from the
second register to an aeolian regime, as represented with
crosses in Figure 22. In recorder-like instruments, aeolian
regimes correspond to particular sounds, occuring at low
values of the blowing pressure, and originating from the
coupling between a mode of the resonator (here the 5th)
and an hydrodynamic mode of the jet of order higher than
1 [7, 53, 4].

As highlighted in the same figure, considering the two
different transitions separately allows to find, as previ-
ously, the linear dependence between Pdyn and a2/3. In-
deed, linear correlation coefficients of 0.98 for |a| <
20 Pa/s, and of 0.95 for |a| > 20 Pa/s are found. Since the
corresponding slope is the inverse of 2/3α to the power
2/3 (see Equation 12), such results suggest that α does not
only depend on the fingering, but also on the oscillation
regimes involved in the transition.

The study of the Floquet exponents ρm of the system
supports this hypothesis. The Floquet exponents, com-
puted for the system linearised around one of its peri-
odic solutions, allow to estimate the (local) stability prop-
erties of the considered periodic solution [54, 37]. More
precisely, they provide information on whether a small
perturbation superimposed on the solution will be ampli-
fied or attenuated with time. If all the Floquet exponents
have negative real parts, any perturbation will be attenu-
ated with time, and the considered solution is thus stable.
Conversely, if at least one of the Floquet exponents has a
positive real part, any perturbation will be amplified in the
“direction” of the phase space corresponding to the eigen-
vector associated to this exponent, and the solution is thus
unstable.

The real part of the Floquet exponents of the consid-
ered system, linearised around the periodic solution cor-
responding to the second register (i.e. to the “starting”
regime of the decreasing blowing pressure ramps consid-
ered here), are represented in Figure 23 with respect to
the blowing pressure Pm. It highlights that the second reg-
ister is stable for all values of Pm between 300 Pa and
259 Pa. A first Floquet exponent introduces an instability
at Pm = 259 Pa, wich corresponds to the destabilisation of
the second register (see Figure 12). As highlighted in [9],
such a destabilisation, corresponding to a bifurcation of
the second register, causes the regime change. This point
is thus the static threshold Pstat 2→1, already highlighted
in Figure 12. A second Floquet exponent reaches a posi-
tive real part at Pm = 229 Pa. Moreover, the real part of
the latest exponent becomes higher than the first one for
Pm < Pcross, with Pcross = 224 Pa.

Comparison between results presented in Figures 22
and 23 suggests that the arrival regime resulting from a
regime change is driven by the highest Floquet exponent
(in terms of real part) of the starting regime. Indeed, until
the regime change threshold Pdyn remains higher than the
pressure Pcross at which the Floquet exponents intersect,
the “first” Floquet exponent (represented in blue dashed
line in Figure 23) is the highest one (in terms of real parts),
and a transition to the first register is observed. Increas-
ing the slope a of the blowing pressure Pm(t) induces a
shift of Pdyn, which then becomes lower than Pcross. At
Pdyn, the “second” Floquet exponent, represented in black
dashed line in Figure 23, is thus higher (in terms of real
part) than the “first” Floquet exponent represented in blue
solid line. In such a case, the regime change leads to the
aeolian regime.
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This interpretation seems furthermore to be consistent
with the slope change observed in Figure 22 and with the
physical meaning of the real part of the Floquet exponents.
Indeed, as the value of the real part of a Floquet exponent
is related to the amplification of a perturbation with time,
a high value of �(ρm) should correspond to a small dura-
tion t̂dyn of the regime change, whereas a small value of
�(ρm) should correspond to a high value of t̂dyn. There-
fore, by analogy with Equations (9) and (10), coefficient α
can be related to the evolution of�(ρm) with respect to Pm.
Thereby, a faster evolution of �(ρm) with respect to ΔP
should correspond to a higher value of α. Due to Equation
(12), valid for linear ramps of Pm(t), it finally corresponds
to a smaller rate of change of the straight line linking Pdyn

and a2/3. This property is here verified by the comparison
between Figures 22 and 23: the real part of the “second”
floquet exponent (in thick black dashed line in Figure 23),
related to a regime change to the aeolian regime, presents
a bigger slope (with respect to ΔP = Pm − Pstat) than the
floquet exponent inducing a transition to the first register
(in solid blue line in Figure 23). In the same way, the rate
of change of straight line related in Figure 22 to the regime
change toward the aeolian regime (dashed line) is smaller
than that of the straight line related to the transition from
the second to the first register (in solid line).

Surprisingly enough, these results thus highlight that bi-
furcation diagrams and associated Floquet stability analy-
sis provide valuable information in the dynamic case, de-
spite the fact that they involve the static bifurcation theory
and a linearisation of the studied system around the “start-
ing” periodic solution. In the dynamic case, they remain
instructive on the following characteristics:
• the arrival regime resulting from the regime change,
• a qualitative indication on both the duration of the

regime change and the evolution of Pdyn with respect
to the slope a of Pm(t), through an estimation of the pa-
rameter α,

• as highlighted in the previous section, the evolution of
the oscillation amplitude and frequency with respect to
the mouth pressure, even after the static threshold has
been crossed.

5. Conclusion

Compared with the artificial mouth, the experienced re-
corder player is observed to shift significantly the regime
change thresholds, and thus to enlarge the hysteresis. Less
difference is observed between the non musician and the
artificial mouth. The experimental and numerical results
show that once the steady threshold has been reached, the
regime change thresholds (and thus the hysteresis) depend
of the rate of increase or decrease of the blowing pressure.
Modification of the dynamics of the blowing pressure can
thus allow a player to avoid or to favor a given oscillation
regime, and thereby to select the note following a regime
change.

The proposed phenomenological model of regime
change predicts the dynamic regime change threshold
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Figure 23. G4 fingering: real parts of the Floquet exponents of
the system linearised around the periodic solution corresponding
to the second register, with respect to the blowing pressure Pm.
Floquet exponents provide information on the stability properties
of the considered regime.

from the temporal profile of the blowing pressure. Bifurca-
tion diagrams and the associated Floquet stability analysis
help explain the dynamic case.

Experimentally, the influence of the blowing pressure
dynamics is not enough to explain the thresholds and hys-
teresis produced by the experienced player, probably be-
cause other playing parameters (such as the shape of the
blowing pressure profile and the vocal tract) are involved.

Appendix: Validation of the phenomenolog-
ical model of register change in the case of
piecewise linear ramps of the blowing pres-
sure

The validity of the proposed phenomenological model of
register change has been tested, in Section 4.2, for the case
of linear increasing and decreasing ramps of the mouth
pressure. The case of piecewise linear ramps achievied
experimentally and in time-domain simulation (see Sec-
tion 3.3) is now examined, to determine if the model al-
lows to predict the value of the dynamic regime change
threshold.

According to the proposed model, the regime change
occurs (and is observable) at time t̂dyn, at which ζ(t̂dyn) =
t̂dyn
0 f (ΔP ) dt̂ = 1.
Contrary to the case of linear ramps, function ΔP (t̂) can

no longer be written simply. Consequently, the first (lin-
ear) part of the pressure profile, with slope a1, is first con-
sidered and the value of ζ reached at time t̂knee (at which
the slope break occurs) is computed through

ζ(t̂knee) =
t̂knee

0
f (ΔP ) dt̂. (A1)

As demonstrated in Section 4.1, f (ΔP ) = α (ΔP ).
Moreover, on this first linear part of the pressure profile,
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ΔP (t̂) = a1 t̂. Equation A1 is thus rewritten as

ζ(t̂knee) =
t̂knee

0
α ΔP dt̂

=
t̂knee

0
α a1 t̂ dt̂

= α
√
a1

t̂knee

0
t̂ dt̂ (A2)

=
2
3
α
√
a1 t̂

3/2
knee.

Taking into account the fact that t̂knee = ΔPknee/a1, the
following expression is finally obtained:

ζ(ΔPknee) =
2α
3a1

ΔP
3/2
knee. (A3)

The second (linear) part of the mouth pressure profile is
now considered, and the time required to reach the value
ζ = 1 is computed through

t̂dyn

t̂knee

f (ΔP ) dt̂ = 1 − ζ(ΔPknee). (A4)

On this second linear part of the profile, the evolution of
pressure with respect to time is written through ΔP (t̂) =
ΔPknee + a2 t̂. Substituting, as above, the expressions of
f (ΔP ) and ΔP (t̂) in Equation (A4) leads to

t̂dyn

t̂knee

α a2 t̂ + ΔPknee dt̂ = 1 − ζ(ΔPknee); (A5)

2α
3a2

ΔPknee + a2 t̂dyn − t̂knee
3/2 − ΔP

3/2
knee

= 1 − ζ(ΔPknee); (A6)

t̂dyn =
1
a2

3a2

2α
1 − ζ(ΔPknee) + ΔP

3/2
knee

2/3

− ΔPknee

a2
+ t̂knee. (A7)

By knowing that t̂knee = ΔPknee/a1 and substituting
ζ(ΔPknee) by its expression determined in Equation (A3),
one obtains

t̂dyn =
1
a2

3a2

2α
− ΔP

3/2
knee 1 − a2

a1

2/3

+ ΔPknee
1
a1

− 1
a2

. (A8)

Knowing this expression of t̂dyn, the value of Pcorr, defined
in Section 4.1, can now be computed,

Pcorr = ΔP (t̂dyn) = ΔPknee + a2(t̂dyn − t̂knee), (A9)

P
3/2
corr =

3a2

2α
− 1 − a2

a1
ΔP

3/2
knee. (A10)

According to the proposed model, the dynamic regime
change threshold power 3/2 should thus be an affine func-
tion of ΔPknee to the power 3/2. To check the validity of
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Figure A1. Time-domain simulations of increasing piecewise
linear ramps of the blowing pressure (a1 = 500 Pa/s and a2 =
830 Pa/s), for the G4 fingering. Representation of the difference
between the dynamic regime change threshold and the static
regime change threshold to the power 3/2, with respect to the
power 3/2 of the difference between the pressure Pknee at which
the slope break occurs and the static regime change threshold.
The solid line represents linear fit of the data, which present a
near correlation coefficient higher than 0.99.

the model, Figure A1 represents, for the same data pre-
sented in Figure 17, the value of Pcorr to the power 3/2
with respect to the difference between the pressure Pknee

at which the knee occurs and the static regime change
threshold. It is recalled that these data correspond to time-
domain simulations (G4 fingering) of piecewise linear
ramps of the blowing pressure, with a1 = 500 Pa/s and a2

= 830 Pa/s. As predicted by the model, a linear relation
is observed between P

3/2
corr and ΔP

3/2
knee: the linear fit (high-

lighted in solid line) presents a correlation coefficient with
the data higher than 0.99 (the corresponding p-value is less
than 1−12).
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