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Abstract

The scaling of a family of five baroque recorders is studied con-
sidering two aspects: the compass of each instrument and the control
parameters. The observations are interpreted in terms of the homo-
geneity of the timbre. The control parameters are measured on an
experienced player performing a simple scale task on each of the in-
struments, and are described in the frame of the hydrodynamic jet
behaviour.

On the family studied, the geometrical parameters appear to be
adjusted so that the control parameters are similar on all the instru-
ments. Low-pitched instruments present an enrichment of their spectra
in high frequencies.

PACS: 43.75

1 Introduction

Consorts are known in the european classical music since the Medieval period
as sets of instruments of like kind. The instruments of a consort offer differ-
ent compass, allowing the development of polyphonic music covering a large
tessitura (Galway [11]). Viols and recorders are probably the best known
examples of consorts during the Medieval and Renaissance periods, but the
idea of families of instruments has later been widely developed mostly for
instruments showing a somehow restricted compass, like the flutes, the sax-
ophones, the clarinets or the bowed string instruments.

Instruments of a given family generally share the same sound production
mechanism, construction material and basic playing technique, while their
dimensions are adapted to their individual compass. The design of a family
should take into account the sounding homogeneity of the family but also
some aspects of playability. Families are different according to their playa-
bility : while a recorder player will moslty practise on the alto recorder, s/he



are expected to be able to play all instruments of the family from the bass
to the sopranino. On the other hand, bowed string players are not expected
to play other instruments of the bowed string family. A cellist, for example,
will develop a technique to play the cello, and the maker does not have to
make different instruments of the bowed string family that would be possible
to play with a common technique. Coming back to the recorder player, it is
most likely that s/he will prefer a family of instruments that can be played
in the most similar ways.

This paper deals with families of flute-like instruments. The study was
triggered by the fact that, from the point of view of the physics of the in-
strument, instruments at opposite ends of a same family should show some
extreme adjustments of the excitation geometry and parameters. This is
expected to develop our understanding of the making and playing compro-
mises.

In the case of flute-like instruments, different families exist. The instru-
ments can be classified according to the relative influence of the maker and
the player in the resuting sound. In the case of organ pipes, the player
decides the valve opening, that causes the pipe blowing, but the control
parameters (e.g. the blowing pressure of the pipe) is determined by the
maker. Conversely, shakuachi-like flutes are instruments in which the player
not only controls the pressure and geometry of the excitation, but also the
boundary conditions of the active end of the pipe, and has therefore a very
wide control on the sound produced.

Study of an instrument family has already widely been discussed by
Hutchins on the violin-strings family. The purpose there was to propose
a new family made of eight members to cover the total range of written
music. This study covers scaling rules between the different instruments
and resulted in the making of a specific family : the violin octet [14].

Considering an organ rank as a flute family, scaling rules can be given.
For instance, Bedos de Celles and Fletcher present rules for the different
relevant dimensions of organ pipes [9, 1].

In this study a family of recorder is studied. In the recorder, the maker
decides and builds the geometry, and the player focuses on the control of
the blowing. One key difference with the violin family is that a single player
is supposed to be able to play all the instruments of the family. The maker
thus tries to maintain a similar technique along the family.

The goal of this study is to understand the way an instrument maker
scales the different instruments of a family, keeping in mind homogenity of
the playability as well as the resulting sound balance of the family. Control
parameters in playing condition have been measured and are analysed, as
well as some sounding properties.

Section 2 presents a quick overview of the current knowledge on the
physics of flute-like instruments. The blowing indicator presented in this



Figure 1: Schematics of the excitator of a flute-like instrument. The cham-
fers are not displayed, and the curvatures inside the channel are exagerated
for readability

section will be used to analyse the player’s control in section 4. Section 3
presents the geometry as well as the blowing characteristics associated with
the five recorders of the family studied. Finally, the results will be discussed
in section 5.

2 Framework

The excitation mechanism of a flute relies on the interaction between an
unstable air jet and the acoustic field from the resonator. Perturbations
are convected and amplified along the jet, and acoustic sources are created
by the interaction between the jet and the labium [13]. The pipe acts as a
resonator and accumulates energy at specific frequencies, resulting in a self
sustained oscillation. Figure 1 shows a schematics of the excitator of a flute,
defining the relevant dimensions we will use further : the height h of the
channel, the distance W from the channel exit to the labium. The jet, with
the center velocity u;, is not presented on the figure 1.

In the literature, the instability of a laminar jet is described with the
Rayleigh two dimentional instability theory [19, 8]. In his theory, the jet
is inviscid and described by its stream function. A small perturbation with
the pulsation w is added to the jet stream function, resulting to a corrected
flow. The perturbation stream function is of the form :

{zp(X,Y,T) = R(p(Y)el X)) )

a = ar+jo



In the Rayleigh equation (1), ¢(Y) and « are complex factors. The
real part «, of a is the wavenumber of the perturbation which propagates
with the velocity ¢, = air The imaginary part «; stands for the spatial
amplification of the perturbations along the path of the jet. Using mass
and vorticity conservation expressions, and linearising, leads to a differen-
tial equation linking «, w and ¢ to the unperturbed velocity profile of the
jet. Thus, the amplification of the perturbations along the path of the jet
depends on the frequency of the perturbation and the velocity profile of the
jet.

At a first approximation, the perturbation convection velocity is propor-
tionnal to the center velocity of the jet ¢, ~ 0.3u;. Coltman [4] stated that
a phase optimum of the oscillation is reached when the time taken by the
perturbations to travel through the mouth of the instrument UWJ is half the
sound period%. A natural indicator of the blowing state of the instrument
would then be the Strouhal number, which is the ratio of the frequency
times the distance traveled between the channel and the labium and the
jet velocity. In order to describe the blowing on an oscillation regime by
a dimensionless number, we use the inverse of the Strouhal number, or di-
mensionless jet velocity, 6, as the jet velocity is directly linked to the mouth
pressure control parameter (as discussed in section 3.2) :
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At the phase optimum defined by Coltman with the convection velocity

0.3u; i
of the perturbations, we have # = 2f and thus 0,,; = u;;{}t ~ 6. The

dimensionless velocity 6 appears to be a blowing indicator, independently
of the note played. In playing conditions, standard values are 7 < 6 < 17,
while 8 may be as low as 3 for artificial blowing on the first oscillating regime.
For high 6 values, jet velocity is high relatively to the regime played. This
eventually leads to a jump to the higher regime. On the other hand, for low
values of 6, the oscillation can jump to the the lower regime or even stop.

Verge et al. [22] showed that the spectral content of the inner field of
recorders strongly depends on the values of 6. In particular, for 8 < 6 < 10,
the amplitude of the second harmonic of the inner field presents a strength-
ening up to 20dB, depending on the relative tuning of the passive resonances
of the pipe, as discussed by Coltman [5]. Thus, 6 is considered as a good
descriptor of the state of the instrument.

Moreover, the spectral content of the inner field is tightly related to
the radiated field’s spectral content : in the experiments, the inner pressure
p is measured at a distance Az (taking into account the acoustic length
corrections) of the exit of the pipe. As the waves in the resonator are
stationnary, the amplitude of the oscillation measured is affected by the
z-dependance of the pressure.



The complex amplitude of the acoustic field is then:

p(Az)
pin(k) = sin(kAz)’ (3)

where k is the wavenumber. In a low frequency frictionless approxima-
tion, the radiation of one end of the pipe can be described as a monopole,
and is then related to the acoustic flow ¢. The flow ¢ is simply derived from
the inner pressure by Euler’s equation, that leads to ¢ = —j S22, where S
is the section of the opening. Levine & Schwinger [16], in Chaigne & Ker-
gomard [2], derive a low-frequency approximation of the radiated field from
a non-flanged pipe, that can be written, in the axis of the pipe:

. ZR e—jkr
P, = jk 1+ — 4
out (T) J POC¢ ( + 00O ) dnr ( )

where pg is the density of air at rest, cg is the acoustic celerity, and Zp =
2
PoCo (%k@ (%) +j(k%> is the radiation impedance (Levine & Schwinger

[16]).
P,,+ shows a highpass behaviour. Using equation (3) and under the
assumption of low frequency (kAz << 1), equation 4 can be written :

p(Ax) eIk .
Az A4nr’ (5)
that is, at low frequencies the spectral content of the radiated pressure
can be approximated by the spectral content of the pressure inside the pipe.

In this study a pressure sensor is flushed in the resonator at the position
x = D from the block, where D is the pipe diameter. The pipe diameter is
small compared to the wavelengths of the acoustic waves A\. This means that
kD = @ << 2m; with these parameters, comparing the approximation
of the radiated field, ]50“25(7“), to the radiated field P, (r), the approxima-
tion proves to be valid within the range of 6dB up to 5000H z for the bass
recorder, and up to 14000H z for the sopranino.

However, this model only takes into account the radiation at the blown
end. A developement taking the radiation at the other end of a cylindrical
pipe can be found in Chaigne & Kergomard [2]. Furthermore, the influence
of the room should also be studied to predict the radiation of the instrument
with accuracy. For these reasons, the internal field is considered in the study.

pout(r) = S

3 Description of the instruments

In the following a specific recorder family is studied. The recorders are
baroque model Aesthé, made by the canadian recorder maker Jean-Luc
Boudreau. The recorders are showed on figure 2. The frequencies of their
lowest notes are 174H z (F) for the bass, 262H z (C) for the tenor, 349H z (F)



Figure 2: Photography of the five recorders studied. With the bass recorder,
the player blows in a bocal, through the “S”-shaped pipe. In the experi-
ments, the instrument is blown directly from the flow channel entrance.

for the alto, 523Hz (C) for the soprano and 698H z (F) for the sopranino.
A 15¢m long ruler is also displayed as a scale reference.

Before studying the playing of a single player on the five recorders, we
consider in this section their dimensions, as determined by the maker, and
the resulting mouth pressure-flow characteristics.

3.1 Dimensions of the recorders

In the family studied, the sopranino recorder has a compass two octaves
higher than the bass recorder. This means, from an acoustic point of view,
that there is a four-fold decrease in the lengths of their resonators. It is
obvious that the different dimensions of a recorder are not related to those
of an other with a simple homothetic relation : if all the dimensions of
the recorder were related by a factor of four between the biggest and the
smallest ones, all the dimensions of the player would have to be related in
such an order of magnitude to. The volume of air needed to blow the biggest
recorder would then be sixtyfour times the one needed to blow the smallest.

The dimensions measured on the recorders are the lengths (L.), the
widths and the heights of the channel exits ( H and h) and entrance (resp.
he and H.) , the distances between the channels and the labiums (W), the
lengths of the chamfers and the diameters of the pipes (D). In the case of
the bass recorder, the bocal is removed to get an acces to the entrance of the
windway. The diameters of the pipes are measured in the cylindrical part



Recorder | Channel- | Channel | Channel | Channel | Pipe Channel | channel
labium entrance | exit length diame- entrance | exit
distance | width width (L) ter (D) | height height
(W) (He)(mm)| (H) (mm) (mm) (he) (h) (mm)
(mm) (mm) (mm)

Bass 7.5 21 19.24 61 32.1 0.98 0.85

Tenor 5.9 15.25 14.45 70.1 22.4 1.18 1

Alto 5.60 13.6 12.24 57 17.5 1.27 0.74

Soprano | 4.45 10.22 9.48 44.7 13.2 1.08 0.67

Sopranino| 4.15 7.48 7.50 34.8 10.6 1.25 0.8

Table 1: Measured lengths for the five recorders. Measurements of h and h,
are less accurate

of the bore, through a hole at the labium level. Please note that due to the
size and the curved shape of the excitation region, measurements are less
accurate for high pitched recorders, especially for the length of the chamfers.
For the same reason, the measurements of the heights (h) of the channels
exit are less accurate. However, one can note that they are always smaller
than the heights of the entrances (h.).

Table 1 shows the width H and length L. of the channel and the distance
W between the channel exit and the labium measured in the five recorders.
These parameters show the greatest variation from an instrument to another.
All the lengths measured decrease when the compass gets higher, excepted
the channel length, that appears to be greater in the tenor recorder than in
the bass recorder. The maker J.-L. Boudreau explains this is due to visual
aesthetical reasons.

An efficient way to represent the variations of these lengths is to nor-
malise them with the lengths measured on a reference recorder. The alto
recorder is chosen as the reference, as its compass is situated in the middle
of the compass of the whole family, and as it appears to be central in the
making as well as in the practise of the players. The normalised measure-
ments are shown on figure 3, with the inverse of the normalised fundamental
frequencies of the lowest notes of each recorder : their ratios are the same as
the acoustic lengths ratios. Excepted for the pipe diameter, the normalised
lengths vary approximatively between % and 1.5.

Figure 3 shows that the relations between the alto and the soprano
recorders are nearly homothetic with a factor 0.8, while the dispersion be-
tween the different lengths is greater for the other instruments of the family.
The further the compass of a recorder from the compass of the alto recorder,
the greater the dispersion between the normalised lengths.

It is interesting to note that the normalised distance W is the length that
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Figure 3: Normalised measurements of the recorders.

varies the less from one recorder to another. For low-compassed recorder,
this length is reduced comparatively to the alto recorder. It is raised com-
paratively to the alto recorder for high-compassed ones.

The normalised pipe diameter varies between % and almost 2. We know
that the quality factor of the resonances of a pipe are tightly linked to its
diameter. Thus, the diameter of the pipe has to follow the variations of the
pipe length to ensure a constant quality factor. Each quality factor reaches
a maximum at a given pipe radius, depending on the mode rank. For values
smaller than this radius, viscothermal loss are predominant [18, 15, 2]. Over
this radius, the loss is dominated by the open end radiations. A compromise
has to be made in the pipe radius to ensure to have a sufficient quality factor

for the first resonances of the pipe.

The mouth of the instrument presents a constriction and thus causes an
acoustic length correction. The maker is then expected to adjust the mouth
surface in relation to the section of the pipe. Figure 4 shows the ratios of
the mouth surface and the pipe section for the five recorders, normalised
with this ratio measured on the alto recorder.

Figure 4 shows that this ratio increases when the compass gets higher.
This variation is quite slow, as the relative ratio increases of a factor two
from the lower to the higher recorder. This means that the mouth surfaces
are comparatively small in the low compassed instruments.
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Figure 4: Ratio of the mouth surface and the pipe section for the five flutes
of the family, normalised by the ratio for the alto recorder

3.2 Mouth pressure - flow characteristic

In its functionning, the recorder is excited by a flow, but the parameter
controlled by the player is the pressure inside his mouth. Through mea-
surements on flute players, Cossette et al. [6] showed that players use an-
tagonistic muscles in order to control the air flow during the playing. This
way, they can finely control their mouth pressure. In the recorder playing,
the resistance of the channel helps to control the flow. The model usually
admitted assumes that the jet velocity is given by the Bernoulli equation

(6):
2P,
uj; = \/ 77 (6)

where P, is the blowing pressure, measured in the mouth of the player.

This model assumes that there are no viscous losses in the channel.
According to the players and the makers, the feeling of a resistance to the
blowing is an important parameter, as it allows a finer control of the flow.
The shape and the length of the channel determine the relation between the
mouth pressure and the resulting air flow [21].

The relation between the mouth pressure and the flow entering the chan-
nel is measured for the five recorders of the family. Figure 5 shows the ex-
perimental setup used to measure the channel charateristics. The flow is
controled with a flow regulator (Brooks 58515) and the mouth pressure is
measured with a manometer (Digitron 2020P). Figure 6 shows the mouth
pressure-flow characteristics for the five recorder.
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Figure 5: Experimental setup for the measurement of the mouth pressure -
flow characteristic
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Figure 6: Air flow through the channel as a function of the mouth pressure
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Figure 7: Pressure-flow (P - Q)) characteristics normalised with the velocity
computed from the Bernoulli relation, plotted as an effective cross section

Seff = Q/\/@

For a given pressure, the flows measured are quite different, from a
recorder to another : the lower is the compass, the greater is the flow. This
follows the measurement shown on figure 1, since the channels widths and
heights are greater in the low compassed recorders. Considering that a low
compassed recorder needs a greater flow to be blown than a high-compassed
one, this result seems quite intuitive.

The figure 6 shows that the mouth pressure - flow characteristics of the
Tenor and the Bass recorder are almost identical. This may be related to
the blowing capacities of the players : a recorder requiring more air flow
would not allow to play sustained notes.

In order to consider the characteristics in terms of resistance, flows are
normalised with the theoretical flow given by the Bernoulli equation (6). Fig-
ure 7 shows the normalised pressure-flow characteristics. When the mouth
pressure increases, the flow tends to behave with the Bernoulli’s law, as ob-
served by Martin [17]. In this representation, the curves tend asymptotically
to an equivalent channel surface. Despite the great differences between the
lengths of the different recorders, the rate of convergence with which the
flow tends to behave like a Bernoulli flow is very similar in all the recorders.

4 Measurements on players

A specificity of the flutes families relies on the fact that a player is supposed
to be able to play with any of the instruments.

11



A second step of the study is thus the measurement of the control param-
eters of a player in order to understand the adaptation from an instrument
to the other.

4.1 Experimental set up

The instruments studied are tweaked in order to experiment with a player.
A hole is made in the resonator close to the labium (one bore diameter
from the block) so that the pressure sensor (B&K 4938) can be inserted
to measure the inner pressure of the instrument. Along the channel of the
instrument, another hole is put in order to have access to the mouth pressure
of the player, with a calibrated differential piezo-resistive pressure sensor
(Honeywell 176PC14HG1) placed inside the mouth of the player through
a soft tube (25¢m long and 1mm internal diameter). The bandpass of the
sensor stands between 0Hz and 2kH z.

The player is asked to play several tasks, from scales to excerpts of
musical pieces. Both the mouth pressure and the inner pressure are recorded,
together with the radiated pressure. The radiated pressure is measured
using mk 6 Schoeps microphones in omnidirectionnal mode, at a distance
of around 60cm from the player. Recording the inner pressure limits the
measurements to be disturbed by the acoustic of the room. Fundamental
frequency detections are made using the YIN algorithm [7] on the inner
acoustic pressure signal. The begining and end of each note is taken by
hand.

4.2 Analysis of a scale

Playing scales is a typical exercise in learning an instrument, and is quite au-
tomatic after several years of practice. As no musical expression is involved,
a scale is expected to provide standard control parameters.

The figure 8 presents the mouth pressure as a function of the note played
for the five recorders, measured in the playing of a chromatic scale. The me-
dian and the distance between the first and third quartiles [20] of the mouth
pressure are represented for each note. For a given recorder, the mouth
pressure increases with the pitch. At the highest notes, a discontinuity of
the mouth pressure is observed (this discontinuity may be easier to observe
on the flow curves figure 9).

This discontinuity of the control pressure may be linked to a transition
to turbulence. Table 2 shows the estimation of the Reynolds number of the
jet Re = WTEH, where v is the cinematic viscosity of air, U; is the velocity
of the jet estimated from the mouth pressure with the Bernoulli relation
(equation 6), and h.ys is the effective height of the windway exit, obtained
by dividing the effective section S.rs by the channel width measured.

The Reynolds number is estimated for two notes : the note juste before

12



‘ Recorder ‘ Transition Reynolds ‘ Highest note Reynolds ‘

Bass / 2047
Tenor 2371 2612
Alto 2239 2290
Soprano 2541 2028
Sopranino 2378 2930

Table 2: Estimation of the Reynolds number of the jet at the transition note
and for the highest note of each recorder

the discontinuity, that we call transition note, and the highest pitched note
of each instrument. Please note that the bass recorder does not present
transition note. A transition to turbulence can be expected for 1000 <
Re < 2000.

The Reynolds numbers computed for the transition notes stand between
2200 < Re < 2700. Again, one should note that using the Bernoulli relation
to estimate the jet velocity leads to an overestimation of this velocity, and
thus of the Reynolds number. It is interesting to note that the value of
the Reynolds number computed with the highest pitched note of the bass
recorder (which does not present discontinuity in the mouth pressure) is
slightly lower than the Reynolds numbers computed for the transition notes
of the other recorders. This may be a clue indicating that the jet in the bass
recorder never reached the transition to turbulence in the experiments.

This discontinuity excepted, the logarithm of the mouth pressure seems
to evolve linearly with the pitch, or, more generally, the logarithm of the
frequency.

Considering the whole family instead of one recorder, it appears that the
mouth pressure needed to play depends on the fingering rather than on the
pitch. The overall pressure range stands between 300Pa and 3000Pa. This
is an important observation, as it means that despite the great differences of
compass between the highest and the lowest recorders, the playing technique
does not differ much in terms of blowing pressure. From the maker point of
view, this can be seen as the way to help the player to adapt on the different
recorders. However, the same pressure does not lead to the same flow in the
different recorders (see figure 6).

Figure 9 shows the excitation flow of the different recorders for the same
task. The flows are estimated by interpolation of the characteristics of figure
6 when the pressure range stands in the range of the characteristics measure-
ment. Outside this range, the flow is estimated with the Bernoulli equation
with the equivalent surface deduced from the data presented on figure 7.

In this representation, it becomes clear that on their whole compass, the
recorders are excited on different registers. Especially for the highest notes,

13
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Figure 8: Mouth pressure versus note played for the five flutes in a chromatic
scale playing

where a sudden decrease of the flow can be seen.

4.3 Recorder, pitch and spectral centroid

One key point in a family is to keep a sound unity among the different
instruments. As with the lengths of the recorders, the spectra of the sound
produced by two different recorders are not expected to be related with an
homothetic relation. An homothetical relation between the spectra of the
different recorders would result in a very dull sound for the low compassed
ones, or a very piercing sound for the high compassed ones. In particular,
the maker is expected to enhance the spectrum in the high frequency for the
low pitched notes to preserve the audibility over the tessitura of the whole
family.

We use the spectral centroid CGS (Grey & Gordon [12]) to describe the
balance between high and low frequencies:

S 2o FIACS))
SIAG @)

where |A(f)| is the modulus of the spectrum,and F's is the sampling
frequency.

The spectral centroid increases with the frequency of the note played.
A more remarkable result is that for a given note played with different
recorders, the spectral centroid is of the same order of magnitude. As a
consequence, the evolution of the spectral centroid over the tessitura of the

CGS =

14
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Figure 9: Excitation flow versus note played for the five flutes in a chromatic
scale playing

whole family is continuous : there is no gap in the spectral centroid between
recorders.

The gap between the lowest and the highest notes played in this study
is 52 semitones, corresponding to more than 4 octaves, that is, a frequency
ratio of more than 16 for the fundamental frequencies. On the other hand,
the spectral centroid varies between approximatively 500H z for the lowest
note and approximatively 4000H z for the highest note. Thus, the variations
of the spectral centroid are less than a half of the pitch variations over the
whole tessitura.

Figures 10 and 11 show the spectral centroid on the spectrograms of the
inner pressure field of the bass and sopranino recorders. The frequency of
the centroid is of the order of magnitude of the third harmonic for lowest
notes of the bass recorder, while it follows the fundamental for the sopranino
recorder.

It is noteworthy that in the frequency range of the spectral centroid
presented in figures 10 and 11, the acoustic pressure radiated through the
blown end can be approximated by the inner pressure, as discussed in section
2.

5 Discussion

In the making of a recorder family, some parameters have to be tuned in
accordance with the physics of the instruments. Thus, the lengths and
diameters of the resonators as the mouth surface depend merely on the
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Figure 11: Representation of the spectral centroid (black line) on the spec-
trogram for the sopranino recorder
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compass of each instrument. Other parameters can be tuned with more
freedom and reflect the will of the maker, and some are related to the human

physiology.

5.1 Dimensions of the instruments

As already noticed the lengths of the different recorders of the family are
not homotheticaly related. With an homothetic relation between the lengths
of the recorders, each recorder would need to be played by a player whose
capacities are related with the compass. In a first place, the maker has thus
to tune the parameters of the instruments so that they can be played by the
same player.

Figure 8 shows on a scale task that the mouth pressure used to play
depends on the fingering of the instrument rather than on the played note.
But considering these measurements together with the mouth pressure - flow
characteristics (figure 6) shows that the incoming flow is different from an
instrument to an other with the same mouth pressure (figure 9).

The maker can tune the required mouth pressure and the incoming flow
independentely by tweaking the channel geometry and the jet width. This
provides the resistance needed to increase the mouth pressure while playing.
This resistance can be illustrated considering the normalised characteristics
(figure 7): for the playing range observed, the flow inside the channel is
closer to a Bernoulli flow with recorders presenting a higher compass than
with recorders presenting a lower compass, while the flow is greater with
low-compassed recorders.

On figure 12, the diameters of the recorders (table 1) are compared with
the pipe diameters of the Prestant organ stop of the basilique de la Madeleine
in Saint-Maximin, as measured by Cheron [3]. The pipe diameters of the
organ are fitted with Fletcher’s empirical law [9]. It is remarkable that in
the middle of their tessitura, the recorder pipe diameters fit very well with
the organ pipe diameters. The representation of the recorder diameters
assumes that the bores are cylindrical and does not take into account tone
holes. Thus, it should be considered as a representation of the order of
magnitude.

On the same figure, the results of the computation of the pipe diameter
maximising the quality factor of the three first resonances of an open-open
cylindrical pipe are also displayed. The detail of the computation is pre-
sented in appendix A.

The principle of this computation is not new and is based on the same
principle as the calculus of the pipe diameter variation law derived by
Fletcher & Rossing [10], that leads to similar results. However, the value
of the quality factor @, of the nth resonance of the pipe is here directly
estimated, and leads to the variation law of the pipe diameter that appears
to be a power of the frequency.
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Figure 12: Comparison between the diameters of organ pipes with the di-
ameters of the recorders versus the note played. The optimal diameters of
cylindrical open-pipes, in terms of modes quality factors are displayed as
well as Fletcher’s empirical law for pipes diameters

In a simplified description of the oscillation in a recorder as a looped
system (Chaigne & Kergomard [2]), the quality factor is an important pa-
rameter since it controls the slope of the phase shift around the resonances.
This determines the frequency shift with the blowing blowing. The ampli-
tude of the pipe response should as well be considered, especially around
the oscillation threshold.

Moreover, considering a cylindrical pipe open at both ends may seem to
be an oversimplification. Again, the aim of this estimation is to be as simple
as possible, and adding the conicity, the constriction at the end of the pipe
and the tone holes would be necessary for an accurate calculation for each
fingering,.

It is worth to note that the pipe diameters are of the same order of
magnitude. Please note that the computation takes into account radiation
and viscothermal losses in the pipe [16, 2], but neither the constriction in
the active extremity of the pipe, nor the conicity of the recorder pipes.

Considering figure 12, it seems that pipe diameters are greater than the
diameter maximising the quality factor of any pipe mode. For diameters
greater than the diameter maximising the quality factor of a mode, losses
are dominated by sound radiation. The recorders diameters plot do not take
account of the conicty of the resonator either.
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5.2 Mouth pressure

As noticed on figure 8, the natural logarithm' of the mouth pressure evolves
linearly with the note played (relatively to Ay49) for each flute. This can be
written as:

P, =A [mogQ (ﬁﬂ +In Py, (8)

where A expresses the slope of the linear fit, and P49 the mouth pressure
used to play an Ayyg within the fit. Equation 8 can be rewritten as:

12A

P = Puo (ﬁ) " (9)

This is of course a very crude approximation, as it fits with the same
curve the different blowing pressure needed for the different registers of the
instrument. The exponent a = % expresses the slope of the linear fit,
and Py is the reference blowing pressure at 440Hz. The values of these
parameters are displayed respectively on figures 13a and 13b.

As in the figure 4, the alto recorder seems to mark a breaking between
the recorders: its reference blowing pressure appears to be slightly higher,
and the slope of its playing pressure lower than one could expect considering

the reference pressures of the other recorders.

5.3 Sound amplitude

For the purpose of being played together, the relative sound intensities of the
recorders have to be of the same order of magnitude. Figure 14 presents the
acoustic pressure amplitude, in dB SPL, measured inside the instrument as
a function of the note played. Please note that the inner field is composed

'Please note that the figure 8 is plotted on a log,, scale
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Figure 14: Inner mean quadratic acoustic pressure as a function of the note
played, measured at a distance of one bore diameter from the block

by stationnary waves, and the amplitude is a function of the position of
the microphone in the resonator. In all the recorders, the microphone is
mounted, at a distance of one bore diameter from the block.

As shown in figure 14, the sound amplitude raises with the frequency
within a range of 20dB, and a slope of approximatively 10dB per octave.
This might be linked to the fact that the source strength is, as a first approx-
imation, proportionnal to the total jet flow. The mean quadratic pressure
of the inner field presents also discontinuities at register changes with each
recorder.

The radiated pressure has been recorded with a Schoeps mk 6 micro-
phone couple in an acoustically untreated room. The microphones have not
been calibrated and the intensity scale is relative to 1.

One key difference between figures 14 and 15 is the differences of sound
pressure. While the slopes of the sound amplitudes versus the note played
are of the same order of magnitude in the inner and radiated field, the
differences between the recorders are reduced in the radiated field. One
has to be careful with the interpretation of the radiated amplitude, as the
room is acoustically untreated. Moreover, the instrument radiates through
different holes, which leads to complicated interference patterns.

5.4 Dimensionless velocity

As already said, some of the making parameters of a recorder, as the pipe
length, are determined by the physics of the instrument. On a second place,
the making parameters can be used in order to tune the sounding of the
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Figure 15: Mean quadratic pressure as a function of the note played for the
radiated pressure, measured at a distance of 60cm from the recorder

instruments. Again, with homothetical relations between the excitation
mechanisms of the recorder, the resulting spectra would be related with
homothetic relations, leading to a dull sound for low compassed recorders.

Normalising the spectral centroid with the fundamental frequency mea-
sured shows an emphasis of the higher frequency for low-compassed recorders.
Moreover, the normalised centroid tends to the unity for the highest notes
(figure 16). As observed in figures 10 and 11, for the lowest notes, the nor-
malised centroid tends to 3 and tends to 1 at highest pitchs. At a given
pitch played with different recorders, the normalised spectral centroids are
of the same order of magnitude.

It is noteworthy that the normalised centroid presents a change in slope
around Ay4g. The centroid raises fastly when the pitch becomes lower, but
decreases slowly when the pitch becomes higher than 440H z.

As discussed in section 2, the dimensionless velocity 6 = ;]—VJV is a good
indicator of the blowing state of the instrument. In particular, spectral
enrichment is observed when 6 raises. It has been observed in section 3.1 that
the distance between the channel exit and the labium, W, is comparatively
short fo low compassed recorders than for high-compassed ones. Keeping the
other parameters fixed, this leads 0 to be relatively higher in low-compassed
recorders than in high-compassed ones.

Figure 17 shows the dimensionless velocity of the jet as a function of the
note played for the five recorders. The jet velocity is computed with the
Bernoulli’s relation, due to the lack of knowledge on the velocity profile of
the jet and on the channel exit surface. Thus, the dimensionless velocity 6 is
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Figure 16: Normalised spectral centroid calculated on the inner sound field
with the scale task

slightly overestimated. However, comparing the mouth pressures measured
on figure 8 with the normalised characteristics on figure 7, leads to think that
the approximation is good, except for the very low notes of each instrument.

Except for the bass recorder, the dimensionless velocities 6 of the differ-
ent recorders match for a given note. On the whole compass of the family, ¢
decreases linearly when the pitch of the note increases. Around Ag49, values
of 0 are 8 < 0 < 12. Below this pitch, the inner sound field presents an
enrichment (figure 16), and the values of 6 are consistant with the measure-
ment by Verge et al. [22].

6 Conclusion

The study presented in this paper aims at understanding the characteris-
tics of the different recorders that contribute to build a homogenous family
through a greater than 4 octaves compass. The study is based on geometrical
measurements on five handmade recorders designed to provide a homoge-
nous family. The data is interpreted within the framework of the current
knowledge on aeroacoustic sound production in flute-like instruments.

The main results indicate that the family is designed to provide an easy
and homogenous control of the five instruments by using a common blowing
pressure range, corresponding to a similar behaviour of the mouth pressure-
flow characteristic. This may provide a homogenous feeling of resistance
for the five recorders. The sounding homogenity of the family is controled
both through a higher excitation flow in the low pitched instruments and an

22



% -+sopranino
Lk -X-soprano
16 ﬁ Aalto
\ Otenor
14 K
* ¥ *(BP \ “basse
E12— :
§L\
I 10|
)
8
6
4
—%0 -1 0 30 40

0 10 20
Note (semitones rel.” A449)

Figure 17: Dimensionless velocity 6 as a function of the note played for the
five recorders

increase of the spectral content for the low notes.

Our study is restricted to a specific recorder family and the result pre-
sented should be compared to others families in order to settle whether the
ideas are general or specific to the family studied. Moreover, blowing and
sounding parameters were studied for only one player. This also restricts
the conclusions, eventhough the scale task studied here does not appear to
be highly dependant on the players as far as mean blowing pressures are
studied.
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A Estimation of the variations of the quality fac-
tor of a pipe with its radius

The passive resonances of an open-open pipe are studied here. At frequency
close to the resonance frequencies of the pipe, a great part of the acoustic
energy is kept in the pipe in the form of stationnary waves, while a small
part of the energy is dissipated by two mechanisms: viscothermal losses
near the walls of the pipe, and acoustic radiation at the extremities. The
quality factor describes the ratio of energy kept by the pipe near a resonance
frequency with the quantity of energy lost.

The quantity of energy loss affects the quality factor @),, of the resonance
modes of the pipe. Moreover, losses are dependent of the pipe radius: for
narrow pipes, viscous losses are dominant. In the case of very wide pipes,
the energy is lost through radiations.

We intend here to estimate the quality factor @), of the different res-
onance modes of an open pipe, as a function of the radius a = % of the
pipe. The following discussion is only valid for low levels, for which waves
are governed by the linear acoustics laws. The solution is written using a
perturbation method under the assumption of low frequencies 2% >> a, and
pipe radiuses large compared to the thickness of the boundary layers.

At low frequencies, plane waves travel in the pipe. For harmonic excitation,
the acoustic pressure and velocity are of the form:

{p(:ﬂ,t) = (Ae_jm—{—Bejk“”)ej“t (10)

v(x,t) = i(zﬁle*jkm — Belkz)eiwt
At low frequencies, the radiation efficiency is very poor, so that |B| ~ | A]
and the waves are stationnary. The acoustic impedance at the abscissa z is
then written Z(x) = —jpctan(Kz — ¢).
At x = L, the acoustic impedance is given by the radiation impedance
(Levine et Schwinger [16]) ; then, writting the low frequency developement
of the radiation impedance:

1
—jpctan(KL — ¢) = pc (ZkQaQ —|—j0.6/<:a)

At low frequencies, the modulus of the radiation impedance is low com-
pared to pc. With a first order developement, we get :

1
—¢=—-KL+ jZkQQQ — 0.6ka (11)
At z = 0, the impedance of the pipe is a radiation impedance:

1
—jtan(—¢) = —ZkQaQ — j0.6ka
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Using the m-periodicity of the tan(z) function, and the low modulus of
the radiation impedance we get :

1
¢ = jzkif — 0.6k a — nm (12)
And combining equations 11 and 12, brings:

1
KnL+1.2kpa — j§k§a2 = nm (13)

There is no viscous losses outside the pipe. The dispersion relation is
simply k,, = <=, where w is the pulsation of the wave, and ¢ the propagation
velocity of waves. Inside the pipe, viscous losses and thermal transfer exist,
and the dispersion relation of the waves is written K, = “= +(1—j)xy,where

Xn = 3 X 1075@ = X%% (Chaigne and Kergomard [2]).

Equation 13 can then be rewritten :

W, . lw? ,
T(L +1.2a) + xnL — 5 | xnL + 320 | =nT (14)

The quality factor @, is defined such as: w, = €, (1 + L) Which

2Qn
leads to:
Qn 02a? Q 0%a?
—(L+1.2 L o j | =——(L +1.2a) — xnL — =
c( +1.2a) + xn +202Qn+‘7 2ch( +1.2a) — xn 503 nm
(15)
The real part of equation 15 can be approximated simply by 2, =~ 775;.
Putting €2,, in the imaginary part of equation 15, we get finally :
Q, L+12a
Qn = Q—NW (16)
€ xnL + 2o

Figure 18 shows the variation of the quality factors of the five first res-
onances of a 64cm long pipe open at both ends, versus the pipe radius.

Searching a such as 8{%” = 0 leads to:
0 ML ) S 172
—1.2ﬁa - 22—22a +24xx;, gLa +x,L°=0 (17)

Figure 12 is drawn by solving equation 17 numerically for different pipe
lengths.
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