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ABSTRACT

The shape of the labium has important consequences on the
sound produced by flute-like instrument. This statement
is well known by instrument makers who take extremely
care with this precise part. The sharp edge of the labium
modifies both acoustic and hydrodynamic properties. Non-
linear acoustic phenomena and intricate vortex structures
might strongly depend on the shape of the labium. A first
step in the study of the labium is to consider the acoustic
part only. This paper presents a comparison of different
numerical methods to estimate the linear part of the acous-
tic flow around the labium. Results are discussed with re-
spect to the sharpness and the angle of the labium, two
main features of the labium that have already been studied
experimentally. Finally, one of the methods is proposed as
a good candidate to include in a sound production model.

1. INTRODUCTION

In flue instruments a planar air jet is blow towards a sharp
edge called the labium. The shape of the labium is known
by instrument makers to be crucial in timbre and attack
response of flute-like instruments. Whether it is a recorder,
a flute or an organ flue pipe, the sound properties of such
instruments are not intended to be the same, and so are
their labium shapes.
From a physical point of view, the presence of a rela-

tively sharp edge within the resonator and also within the
jet flow will have consequences on the acoustics and the
aeroacoustics of the instrument, respectively.
The constriction of the window and the sharp edge af-

fect the acoustic transverse flow around the labium. Intu-
itively, the acoustic velocity is expected to be accelerated
while approaching the labium. For high amplitude of os-
cillation, the flow separation may occur at the labium [1].
The mechanisms of vorticity generation at the labium have
been modeled by Howe [2], and identified as strong acous-
tic damping mechanisms by Howe [3] and Fabre et al. [4].
The sharpness and the angle of the labium are associated
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with the generation of vorticity, and thus have a great in-
fluence on this damping mechanism.
Conversely to the generation of vorticity at the labium,

the generation and modulation of the vorticity of the jet
within the window is often discussed as the core of sound
production modeling. Based on works of Howe [2] and
Nelson et al. [5], Dequand et al. [6] proposed a discrete-
vortex model in which sound production is ensured by the
interaction of propagating discrete vortices with the acous-
tic flow. According to this model, the source mechanisms
depend on the orientation of the acoustic flow near the
labium and might be modified by a change in the labium
geometry.
Experimental observations of Dequand et al. [6] confirm

the influence of the labium angle on the sound spectra.
A further validation of the discrete-vortex model would
be to include in the model the labium geometry influence
through the modification of the acoustic streamlines and
to check the resulting sound spectra. A first step is to de-
velop a consistent description of the acoustic flow within
the window. This is the aim of the present study.
Four different methods to estimate the flow acoustic around

the labium are presented in section 2 and compared in sec-
tion 3. The effect of two main characteristics of the labium,
the sharpness and the angle, are then presented in section
4. Results are discussed in section 5.

2. PRESENTATION OF THE METHODS

In an aeroacoustical analysis of sound production in such
instruments, where a jet interacts with an acoustic resonator,
the exact definition of the acoustic flow is one of the key
points. Following Howe [2], the acoustic flow is here de-
fined as the fluctuating part of the potential component of
the total flow.
This section presents four methods to study such a po-

tential flow. Three of them are based on the assumption
that the flow within the window is incompressible since the
length of the window W is much smaller than the acous-
tic wavelength. This is therefore a low frequency approx-
imation. In this case, the two components of the flow are
denoted u and v. In the last method, the compressibility is
taken into account and the two components of the flow are
then denoted u� and v�.
The two first methods (complex potential and Schwarz-
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Figure 1. Transformation of the upper half plan (left) to
the recorder window geometry (right) with the Schwarz-
Christoffel transformation.

Christoffel transformation) are usual methods of fluid me-
chanics. It can be shown that they are equivalent for simple
cases, even if the second can be used for more intricate ge-
ometry. The first actually corresponds to the theoretical
study of a flow around an angle. The two last methods
use the Finite Element Method (FEM) to solve either an
incompressible or a compressible flow equation.

2.1 Incompressible flow around an angle: complex
potential

For an incompressible potential flow, the velocity satisfies
the two relations:

∇ · u = 0 and ∇× u = 0. (1)

A description of the two-dimensional flow is possible thanks
to the potential φ and the streamfunction ψ defined as

�
u = ∂φ

∂x = ∂ψ
∂y

v = ∂φ
∂y = −∂ψ

∂x

, (2)

that automatically satisfy the condition in Eq. (1). The
study of the flow can be reduced to the complex analysis
of the complex potential f defined as:

f = φ+ iψ. (3)

The complex velocity w = u− iv is then given by

w =
df

dz
. (4)

The complex analysis of the singularities of f yields to
well known flows. Among others, the case [7]

f = zn (5)

has been identified as the flow around a angle α = π(2 −
1/n). The characteristics of the flow are:
�

φ = rn cosnθ
ψ = rn sinnθ

or
�

u = nrn−1 cos(n− 1)θ
v = −nrn−1 sin(n− 1)θ

,

(6)
where r and θ are the cylindrical coordinates in a refer-
ential where the tip of the angle is at r = 0. Note that
for angles α smaller than π the velocity diverges while ap-
proaching the tip of the angle.

2.2 Incompressible flow through the recorder
window: Schwarz-Christoffel transformation

Another way to obtain a two dimensional flow in a given
geometry under potential assumptions is to use the Schwarz-
Christoffel transformation of the upper half complex plane

Figure 2. Domain of computation for the Finite Element
Method. Solid lines are walls. Outer dashed line are out-
flow boundary. The half circle in dashed line represents the
beginning of the PML condition for the compressible case.
The lower dashed line is the inflow condition. The mesh
generated by the software FreeFem++ is refined near the
tip of the labium with an adaptive algorithm whose error
criteria is based on the modulus of the velocity.

into a given geometry. The transformation used in this pa-
per is illustrated on figure 1. The computation of the trans-
formation is made thanks to the numerical toolbox devel-
oped by Driscoll [8]. The conformal mapping allows to
obtain the streamlines at any required position, i.e. it al-
lows to obtain the streamfunction ψ and the velocity u.
This method has already been applied to study jet recep-

tivity in a recorder [9] and discrete-vortex model [6], al-
though it was used in a ideal case with an infinite plate as
the labium and no wall facing it.

2.3 Incompressible flow through the recorder
window: FEM

It is also possible to solve the flow around the labium by
direct numerical computation. The incompressibility equa-
tion ∇ · u = 0 is rewritten:

Δψ = 0, (7)

where Δ is the Laplacian operator and ψ the streamfunc-
tion defined in Eq. (2). This equation is solved with the
Finite Element Method (FEM) whose only difficulties lie
in handling the mesh and the boundary conditions. The
domain of computation is shown on figure 2. The constant
velocity u0 on the inflow boundary yields to the condition:

ψ = u0y. (8)

The normal velocity on the wall is zero, which leads to the
condition:

�
ψ = 0 for the bottom
ψ = 4Wu0 for the labium , (9)
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Figure 3. Streamlines computed with the different methods. Except for the complex potential method, the vertical wall
stands at x = 0 and the bottom wall at y = −4W ). The Mach number for the FEM computation is M ≈ 10−4. The
Helmholtz number of the compressible FEM computation is He = 0.004.

accordingly to the inflow condition (see Eq. (8)). The out-
flow condition is handled as follow:

ψ = u04W
θr − π

θ0 − π
(10)

where the angle θr = tan−1((y−y0)/(x−x0)) is the angle
of the coordinate on the boundary with respect to the center
(x0, y0) = (W, 0). This corresponds to the incompressible
outflow of a source (f(z) = log(z)), located at the tip of
the labium. The mesh is generated by the same software
used to solve the FEM: FreeFem++ [10]. The mesh is au-
tomatically refined near the region of interest –as shown
on figure 2– with an adaptive algorithm [11] whose error
criteria is based on the modulus of the velocity.

2.4 Compressible flow through the recorder window:
FEM

Even if the incompressible assumption is widely justified
since the window W is much smaller than the wavelength
at low frequencies, it is worth computing the compress-
ible flow around the labium. Besides, the FEM requires no

more computation cost than for the incompressible case.
The Helmholtz equation on the pressure p

Δp+ k2p = 0 (11)

is solved for one wave number k = 2π. The same domain
and mesh as for the incompressible case are used. The
boundary condition are now:

− walls: ∂p
∂n = 0, with n the normal direction

− inflow: p = 1
− outflow: to ensure the outgoing wave with no reflec-

tion, a Perfectly Matched Layer (PML) is used [12].
The PML consists in artificially adding damping while the
wave approaches the boundary. A new wave number is
defined as

k� = k(1 + i�), (12)

where � is a small control parameter which is zero to de-
scribe normal propagation and non-zero (∼ 0.1) to de-
scribe the damped propagation. The subsequent outflow
condition is written:

∂p

∂n
= −ik(1 + i�)p, (13)
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Figure 4. Ratio of the angle of the velocity field θi/θj , where θ = arctan(v/u) and where the indices are relative
to the methods (either Schwarz-Christoffel transformation or incompressible FEM or compressible FEM). Left: FEM
incompressible over Schwarz-Christoffel. Right: FEM compressible over FEM incompressible.

corresponding to the damped wave propagation through
the boundary of normal direction n. The acoustic velocity
is then deduced from the pressure field and Euler’s equa-
tion: �

u� = ik
ρ0c0

∂p
∂x

v� = ik
ρ0c0

∂p
∂y

, (14)

where ρ0 is the air density and c0 the speed of sound in the
air.

3. COMPARISON OF THE METHODS

Since the complex potential and the Schwarz-Christoffel
methods required a very basic geometry, the four previous
methods are compared within the same (and ideal) config-
uration, i.e. with a sharp labium.
Figure 3 shows the streamlines (isovalue of the stream

function ψ) around the sharp labium for the four methods.
All the methods provide the same global trend of the flow
around the labium. The complex potential does not ac-
count for the walls and the streamlines are not bended as it
is the case for the other methods.
Every numerical method diverge while approaching the

tip of the labium. Thus comparison is made impossible at
this precise location. However, within the digit precision
allowed by the computer, the power law of the divergence
for the three numerical methods has been check to be as
expected by the the complex potential. This point will be
discussed later in section 4.
Rather than the absolute value of the velocity, the perti-

nent information is the direction of the velocity. This can
be described by the angle θ that accounts for the ratio of the
y-component over the x-component of the velocity through

θ = arctan
v

u
. (15)

This scalar definition allows to compare the field in a two
dimensional plot (see figure 4). The Schwarz-Christoffel

transformation and the incompressible FEM give almost
the same results, at least near the labium. This gives sup-
port to the FEM method.
Then, the comparison between incompressible and com-

pressible is made with the FEM method. The incompress-
ibility is characterized by the Mach number M = 4u0/c
and the Helmholtz number He = W/λ = fW/c. In
both cases the inflow velocity u0 ≈ 0.01m/s yields a Mach
number M ≈ 10−4. The compressible case is computed
with a “large” wavelength (k = 2π) yielding a Helmholtz
numberHe = 0.004. For a soprano recorder, the Helmholtz
number would remain under the value corresponding to the
highest note (D7, 2350Hz): He ≈ 0.027. The two meth-
ods show some little discrepancies in the upper area, i.e.
the outward area. This can be due to the hypothesis made
on the outflow condition in Eqs. (10) and (13) for the in-
compressible and compressible cases, respectively. How-
ever, this does not exclude that the incompressible outflow
and the compressible radiation behave differently within
the outward area. This is interpreted as the visible differ-
ence between incompressible and compressible flow.
Besides, it must not be forgotten that the flow is assumed

incompressible since W is much smaller than the wave-
length, but an oscillating flow is expected to occur on the
streamline computed under this assumption.

4. APPLICATION TO AMORE REALISTIC CASE

The FEMmethod allows the previous and idealized case of
the sharp labium to be extended to the more realistic case
of a round labium. The previous configuration is modified
by introducing a curvature R at the tip of the labium as
sketched on figure 5. Results for this new configuration
are discussed in the two following sections in which both
parameters R and α are varied, respectively.
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Figure 5. Modification of the tip of the labium to a
rounded tip.

4.1 Sharpness of the labium

The radiusR has been varied within a wide range of values
from R = W/1000 to R = W/10, for one angle α = 15◦.
The divergence law of the velocity within the window is
compared with the complex potential case (see Eq. (6)) on
figure 6.
For all the value of R, the velocity shows the same trend

according to three distinct areas: close to the wall (x �
W/2), close to the labium (x � R) and between these
two areas. The middle area shows the same power law as
expected by the complex potential method. When going
from the wall to the middle area, the y-component of the
velocity v goes from a non zero and constant value to the
expected behaviour. When getting closer to the labium,
the velocity stops increasing to reach a finite value: the
velocity does no longer diverge and this effect starts at a
distance ∼ R from the tip of the labium.
Besides stabilizing an unrealistic and diverging case, the

10−510−410−310−210−1100

10−1

100

r/W

v
/v

0

Cpx Pot.
R = W/250
R = W/500
R = W/1000

Figure 6. y-component of the velocity v in the window
(y = 0) versus dimensionless radius r/W for α = 15◦

and for different values of R. The radius r is defined as
r = W − x. Note that the r axis is reversed in order
to match to the orientation of the other figures. Vertical
dashed lines correspond to the different radii.

curvature triggers a slower increase of the velocity while
approaching the labium. The bigger the curvature R, the
larger the distance at which the velocity stops increasing
and the lower the amplitude of the velocity at an arbitrarily
close distance to the labium.

4.2 Angle of the labium

The angle α has been varied within a wide range of values
from α = 0◦ to α = 60◦, for one radius R = W/500.
The divergence law of the velocity within the window is
compared with the complex potential case (see Eq. (6)) on
figure 7.
Results are similar to those discussed in the previous sec-

tion in terms of the global trend according to the three
specific areas. As expected, only the value of the diver-
gence exponent n in Eq. (6)) is modified by the angle of
the labium: the slope of the velocity v in the (log r, log v)
plane depends on α only.
Thus, at a distance arbitrarily close to the labium, for a

same inflow u0 the y-component of the velocity v increases
as the angle decreases.

5. DISCUSSION AND CONCLUSION

Different methods to study the acoustic flow around the
labium of a recorder have been compared for one simple
case. The use of incompressible flow methods is justified
at low frequencies since the distance W of the window
is much smaller than the acoustic wavelength. The Finite
Element Method (FEM) is validated in comparison to the
complex potential method, in the case of an incompressible
flow. The assumption of having an incompressible flow
within the window is checked using the FEM: compress-
ible and incompressible FEM give almost the same results.
Little discrepancies arise within the outward area. This is
interpreted as an effect of the compressibility.
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Figure 7. y-component of the velocity v in the window
(y = 0) versus dimensionless radius r/W forR = W/500
and for different values of α. The radius r is defined as
r = W − x. Note that the r axis is reversed in order to
match to the orientation of the other figures. The vertical
dashed line correspond to the radius R = W/500.
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The FEM method presented in this paper is a little more
useful than the previous Schwarz-Christoffel transforma-
tions made by other authors on the same issue, since it
can be applied to more realistic configurations. However,
the present study only provides solutions for the potential
component of the flow and reaches its limit when the whole
flow might be required. This is the case for aeroacoustic
analogies, such as Lighthill’s one, where the non poten-
tial component of the flow is interpreted as sources for the
potential component. Besides, other phenomena are also
not caught by the potential description: neglecting the vis-
cosity is an other important limitation. Viscous effects are
though dominant at the singularity of the potential flow, at
the tip of the labium. When the gradient of the velocity
increases, boundary layer might grow due to the viscosity
and the (acoustic) flow might shed. This has been observed
in flute-like configuration, for high amplitude of oscilla-
tion [4]. This is usually described as the formation of a
free jet that occurs every half period [1, 13] and dissipates
energy. Despite all these limitations, the study of the po-
tential flow around the labium still provides usable results
for more complex studies that would include both poten-
tial and non potential descriptions, and it provides some
insights about the point discussed above.

The FEM confirms intuitive results about the growth of
the velocity near the labium. When far enough from the
wall, the velocity grows as expected for an ideal case. When
close enough to the labium (at approximately one radius
of curvature of the labium), the velocity ceases growing.
It provides quantitative behaviours of the y-component of
the velocity v with respect to both the sharpness and the
angle of the labium: v increases with the sharpness and
with a decrease of the angle. A higher y-component veloc-
ity is expected to trigger non-linear effects sooner. From
there onwards, it may be possible to find a criteria based
an other studies [14] to link the present linear description
to non-linear phenomena. This may find application in re-
ducing the trigger of this non-linear effect that is known
to be a limiting factor in the growth of the amplitude of
oscillation [4] and thus of the acoustic power.

These results come from a numerical computation. It
would be interesting however to compare them to an an-
alytical solution of the flow. The complex potential cor-
responding to the more realistic geometry (walls, labium
with round edge) might be difficult to find. However, the
present Schwarz-Christoffel transformation that already ac-
knowledges for the walls can be adapted to localized round
edges [15]. This would provide an analytical framework
from which the results about the growth of the velocity
near the edge should be confirmed.

The shape (angle and sharpness) of the labium has never
been investigated through modeling. Dequand et. al pro-
posed a discrete-vortex model that can include the orienta-
tion of the acoustic field near the labium. In such modeling,
the sound production is ensured by the interaction of dis-
crete vortices with the acoustic streamlines. It is common
to consider the vortices close to the labium only: they have
a greater contribution than far ones, since the acoustic ve-
locity is greater near the tip of the labium. From the present

study, this assumption can be refined by considering vor-
tices in an area whose characteristic length is of same or-
der than the curvature radius of the labium. The discrete-
vortex approach is a poor approximation of the flow so that
an accurate estimation of the acoustic flow is an overkill
when combining with these models. However, the combi-
nation would still provide a first tool to study the effect of
the angle and/or the sharpness on the sound production.
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