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ABSTRACT

In analogy with strings and acoustic pipes as musical har-
monic oscillators, a novice electronic oscillator is consid-
ered. The equivalent circuit of a discrete representation
of strings and pipes, which takes the form of a discrete
transmission line, is constructed with real electronic com-
ponents. The proposed model includes the “equivalent se-
ries resistances”, which seems to be the only relevant de-
fault for both capacitors and inductors for this application.
In an analytical approach, the complex wave number is de-
rived, allowing the study of both the wave’s dispersion and
attenuation in function of frequency and resulting in rec-
ommended and critical component values. Next, compo-
nents are selected for a first eight-node prototype, which
is numerically evaluated and then practically constructed
and measured. The results prove a good match between
theory and practice, with five distinguishable modes in the
entrance impedance. A new prototype design is planned,
which is expected to have much improved quality factors.

1. INTRODUCTION

The analogue dynamic theories between acoustics and elec-
tronics, allow an “equivalent electronic circuit” represen-
tation of linear oscillating mechanisms. A well-known ex-
ample is the simple spring-mass system that can be rep-
resented by an equivalent capacitor-inductor or “LC” os-
cillator. While this concept is usually applied to facilitate
calculations it also can serve as a source of inspiration to
design new musical electronic circuits. The discrete ideal
string or acoustic pipe representation consists of concate-
nated spring-mass systems. This leads to the idea to con-
struct an equivalent circuit of this so called “discrete trans-
mission line” model, with real components that could op-
erate as a string or pipe. Such a circuit allows electronic
charges to propagate and reflect at open or shorted endings
as boundary conditions, which results in an electronic har-
monic oscillator.
While the proposed electronic resonator is a first order

approach of both a string and pipe, it is just the differ-
ence between these acoustic examples that illustrates the
great variety in timbre and musical expression. There-
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fore, the proposed electronic sound propagative medium
is expected to offer new potentials in this regard. The
more detailed model of the electronic resonator such as
electric losses and nonlinearities and the musician’s ac-
cess to control the instrument, will bring along its proper
(unheard) character. Also, the electric medium allows its
own transform possibilities (we can think of interaction
with magnets, adding external circuits, easily switching
between boundary conditions, designing a broad variety of
mouthpiece models,...).

Historically, it is custom to use equivalent electrical cir-
cuits to study sound transmission through ducts under low
frequency assumptions. For instance, every acoustic publi-
cation usually presents the Helmholtz resonator along with
its equivalent electrical circuit [1]. A panel of “duct acci-
dents”, such as constrictions or tone holes, can also be de-
scribed using equivalent electrical circuits if the different
elements are assumed to interact by simple in- and outputs
only. This is the lumped description that is opposed to an
integral approach.

Passive [2, 3], as well as active [4], studies of musical
instruments also benefited from their equivalent electrical
description. Following the classical description of sound
production as a coupling between an exciter, eventually
non-linear, and a resonator [5,6], attempts have been made
to model sound production with electrical circuits only [7].
Despite the theoretical studies that have been performed,
no experimental, and academical, work seems, to the au-
thors’ knowledge, to be done on this issue, which could
be explained by the only recently available low resistive
capacitors.

As for the design objectives, as usual for musical instru-
ments, a very resonant and harmonic system is desired.
This allows for large dynamics and a long sustained sound
with a wide timber variety. The low inharmonicity ob-
jective is also motivated by the fact that for self-sustained
operation (like winds), the pitch of second register notes,
mainly determined by the second harmonic, will be in bet-
ter accordance with the first register note.

While several plucked and self-sustained excitationmech-
anisms can be imagined, this part of the complete elec-
tronic instrument is not treated in this article.
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2. THEORETICAL STUDY

2.1 Deducing an appropriate model

Considering existing harmonic resonators such as strings
and pipes, we can apply a discretization on a ideal model to
become a finite element approximated representation con-
sisting ofN concatenated equal valued springs and masses
leading to N normal modes. This can be interpreted as a
two-terminal circuit which has both a Thévenin and Norton
equivalent circuit form [8]. In the case of a string, the for-
mer translates force and velocity respectively as the voltage
and current, while the springs and masses respectively re-
late to capacitors and inductors. The Norton equivalent has
opposite relations but is further not concerned in our study.
Using real components for this discrete transmission line,
their own non-ideal characteristics will come into play, so
that an adapted model is needed that takes in these relevant
artefacts.

A first thing to note is that the discretization at the bound-
aries, using a first order approach, causes the inductor at a
shorted boundary to be of half the inductance of the “in-
line” inductors, and similarly, a half-valued capacitor is
used at an open boundary. We will concentrate the study on
a situation with an open entrance and shorted end boundary
conditions, but similar results apply for all other situations
as the electrical open and shorted conditions preserve the
electrical charge and thus are acceptable approximations of
the Dirichlet and Neumann conditions, respectively. While
in mechanics and acoustics a considerable energy loss is
typical at the boundaries, partly to make the instrument au-
dible, in this electrical case, a high impedance connection
can be used to pick up the signal and amplify the sound.

In order to analytically and numerically study the model,
we look for an equivalent circuit that includes relevant com-
ponent artefacts.

Most of the real capacitor defaults are not of importance
for our application. The systems linearity allows a study
and use at low voltages, under the maximum operation or
“breakdown” voltage, and avoiding ripple currents. The
inherent inductance and parallel conductance are negligi-
ble at audio frequencies [9]. It is only the “Equivalent Se-
ries Resistance” (ESR) that is of relevance. This factor is
usually specified at 100 kHz and, according to datasheet
observations, increases about 5 to 100 times at 100 Hz,
which depends on the capacitor type.

The real inductor’s magnetic saturation, parasitic capac-
itance and core hysteresis can be neglected for the same
reasons. Besides inductance, it is also only the ESR (or
“DCR” in datasheets), that plays a role in our applica-
tion [10].

For the same type of capacitor (materials, voltage rat-
ing,...) and inductor (wire type, core material and dimen-
sion,...), the ESR, RC and RL, are related to their capaci-

N N

N

N

Figure 1. Outline of the discrete transmission line with the
appropriate component models

tance and inductance [9, 10], respectively, by:
�

RC = ESR = γC/C

RL = DCR = γL
√
L

. (1)

For different inductors, the remaining resistive factor γL
stays around the order of 1 Ω/

√
H, while the resistive ca-

pacitor factor γC takes the unit of seconds and varies in the
orders of [10−7 − 10−3] s depending on the capacitor type
and design.

Everything together, the appropriate model is presented
in figure 1. It should be noted that all inductances Li are
equal except for LN = Li�=N/2. The same applies for re-
sistor RLi, capacitor Ci and resistor RCi while RLN =
Ri�=N/

√
2, C1 = Ci�=N/2, and RN = 2Ri�=N . This

model is close to the classical electrical transmission line
model based on the Telegrapher’s equations [11]. How-
ever, here the capacitor’s ESR is of importance, rather than
its parallel conductanceG.

2.2 Analytical approach

We develop a mathematical approach to study the proposed
transmission line that partly corresponds to the typical trans-
mission line derivation [11, 12].
First we describe the wave propagation in an infinite “dis-
crete” transmission line. Referring to figure 1 and apply-
ing elementary circuit analysis to each node we obtain a
set of basic circuit equations that after a Fourier transform
directly are expressed in the frequency domain as follows

�

Vn+1(ω) = Vn(ω)− Zs(ω) In+1(ω)

In+1(ω) = In(ω)− Yp(ω) Vn(ω)
, (2)

with Vi and Ii the voltage and current in the corresponding
nodes, and

�

Zs(ω) = RL + jωL series impedance
Yp(ω) =

1(ω)

RC+ 1
jωC

shunt (parallel) admittance
.

(3)
To solve equations (2), we first can cast this array of cou-
pled inhomogeneous equations in the form of a set of cou-
pled, homogeneous algebraic equations that evidence a sim-
ple set of solutions, which may be written in the form:

�

Vn+1(ω) = Vne
−Γ(ω)

In+1(ω) = Ine
−Γ(ω)

, (4)

570

Proceedings of the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden



Figure 2. Frequency evolution of the losses contribution
roots and its coefficients, for the typical component values:
γL√
L
= 213 s−1, 1

γC
= 105 s−1.

where Γ is the complex wave number. If these “constant
phase solutions” are to be valid solutions, the nodal phase
constant Γ(ω) must satisfy the equation:

Zs(ω)Yp(ω) = e
−Γ(ω) + eΓ(ω) − 2. (5)

This results in the dispersion relationship for a discrete,
uniform transmission line:

Γ(ω) = 2 arcsinh

�

�

Zs(ω) Yp(ω)

2

�

. (6)

For a lossless case, we can writeZs(ω) Yp(ω) = −ω2LC.
Γ(ω) is purely imaginary so that no evanescent waves ap-
pear and the nodal phase velocity vϕ(ω) = ω

Im(Γ(ω)) re-
mains constant at low frequencies. vϕ only decreases by
5% at ω = ω0ll =

1√
LC

, the resonant frequency of a sin-
gle lossless LC oscillator, which explains that a finer dis-
cretization reduces this “numerical dispersion”.

Considering the losses, the wave number is complex and
also comprises evanescent waves, described by a nodal at-
tenuation coefficient α(ω) = Re(Γ(ω)). Using eqs. (6)
and (3), we obtain:



















vϕ(ω) =
ω

arcsinh

�

ω
√
LC

�

a+

√
a2+b2

2D

�

α(ω) = arcsinh

�

ω
√
LC

�

−a+
√
a2+b2

2D

�
, (7)

where (using the “equal type” formulations (1))










a = 1−RLRC
C
L
= 1− γLγC√

L

b = RL

ωL
+ ωRCC = γL

ω
√
L
+ ωγC

D = (ωRCC)
2 + 1 = (ωγC)

2 + 1

. (8)

Considering a constant nodal velocity and maintaining the
same type of components, it is clear that L/C should be
chosen as high as possible to reduce the influence of losses.
The order of γL is about 1

�

Ω/s, γC lies between [10−7−
10−3] s and L will have an order of [10−6 − 10−2] H , so
that a number of frequency values can be derived that will
indicate critical lossy zones.
The frequency evolution of the roots and their coefficients
is presented in figure 2. While a remains constant over
frequency and near to 1, the coefficients b andD vary over
frequency.

For ω < γL√
L
= [3− 300] s−1, b increases rapidly so that

both the roots for vϕ and α increase.

When ω approaches 1
γC

= [103 − 107] s−1, b also in-
creases , butD raises by ω2.
In the case of vϕ, the nominator increment is slower than
D, so that the root reduces, and thus the phase velocity in-
creases (counteracting on the numerical dispersion).
For α(ω), the nominator first increases faster than D, in-
creasing the root to a maximum close to ω = 1/γC , where
D will prevail and decrease the root again. However, the ω
factor in the expression of α increases the attenuation fac-
tor with frequency.

When we now consider a finite number of N nodes with
an open entrance and a shorted end condition, standing
waves will appear. The near to ideal boundary conditions
guarantee a simple reflection coefficient that only holds
the medium losses, contained in the complex wave num-
ber: R(ω) = −e−2ΓN . Also in analogy with an acous-
tic cylinder (neglecting radiation) [13], the nondimensional
entrance impedance can be derived as follows:

Ze/Zc =
1 +R(ω)

1−R(ω)
= tanh (ΓN) , (9)

with Zc =
�

Zs/Yp, the characteristic impedance for a
transmission line, which is close to the real constant

�

L/C
for RL

L
≪ ω ≪ 1

RCC
, where losses are small [14].

The entrance impedance Ze is characterized by a num-
ber of modes who’s coefficients can be related to the wave
number components (see Eq. (7)). The (anti-)resonant fre-
quencies ωn = 2πnvϕ/2N and ωn = 2π(2n− 1)vϕ/4N
illustrate the direct relation of the inharmonicity to the change
in phase velocity vϕω0ll (which is constant when perfectly
harmonic). These frequencies indicate the extrema of the
impedance modulus, that depend on the attenuation coeffi-
cient α:

a(M,m)n ≈ tanh (α(ωn)N)
∓1 ≈ (α(ωn)N)

∓1
, (10)

where the negative exponent applies to the maximaM and
the positive one to the minimam.
The modal quality factor is proportional to the maxima but
increases with the frequency, and is independent of N for
low frequencies:

Qn ≈ a(M)nωn
N

2vϕ(ω)
, (11)

For equal components, apart from the α(ω)’s root devi-
ation, the number of nodes does not affect both amplitude
and quality factors of the harmonic series.

It is interesting to study the case where a fundamental fre-
quency is maintainedwhile increasing the number of nodes
by choosing the same inductors and smaller capacitors of
the same type. When doubling the number of nodes for
example, we choose C/4 for the new capacitors, the co-
efficients in Eq. (8) remain equal so that the only change
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in numerical dispersion decreases the inharmonicity. As
the attenuation coefficient is halved, both the an and Qn

remain equal. This means that a fine discretization can be
applied with only the advantage of enhanced harmonicity.

To resume, apart from a preferable high L/C factor; con-
cerning the inductor, γL√

L
should be chosen low enough un-

der the fundamental frequency of the resonator, especially
for (first register) self-sustained oscillation where the first
resonant peak should be relatively high. As for the capac-
itor, 1

γC
should be chosen as high as possible to promote a

soft spectral decay of the impedance peaks.

To obtain sounds, an exciter will be needed. A simple ini-
tial voltage condition is sufficient to model a simple pluck-
type excitation. However, for self-sustained control (which
would be preferable if the resonator is very lossy), a conve-
nient exciter model would need components that supply a
voltage to current ratio in the same order as the character-
istic impedance, just as for acoustic self-sustained mech-
anisms [5]. For now, we disregard the exciter part and
concentrate on the independent validation of the electronic
resonator.

3. STUDY OF A FIRST PROTOTYPE

In this section we will discuss the conception and measure-
ment of a concrete transmission line. The aim is to com-
pare the theory to a first practical prototype to allow more
specific designs later on. We arbitrary choose an eight node
line with ω0ll around 2π1200 to become a fundamental fre-
quency of about 230Hz.

3.1 Selecting appropriate components

3.1.1 Inductors

The ESR of inductors depends on to the wire length and
thickness [14]. Therefore, the variation on γL for a same
cable thickness depends on the core design and permeabil-
ity to the extent of space for windings. A classical inductor
may have γL as low as 1.5. Special core materials, such
as those used in “common mode chokes”, can lower this
value down to 0.5, but the core becomes easily magneti-
cally saturated so that a linear use allows a very limited
coil current. We could neglect this amplitude related as-
pect, which even might evoke a desirable saturation effect
on the sound when experimenting with higher amplitudes
later on. However, These coils have close windings so that
the increased inherent capacitance can slightly decrease the
coil reactance at high frequencies. For these reasonswe opt
for a standard coil type for our first prototype.
We choose a 22 µH Bourns 2305 − RC inductor with
RL = 7mΩ and γL = 1.5.

3.1.2 Capacitors

Many industrial applications have promoted the design of
low ESR capacitors, but none of them are specifically de-
signed for the audio domain, which explains the poor con-
cerning information in datasheets. We consider three suit-
able types [15]:

Figure 3. Evolution of the phase velocity relative to ω0ll
for the lossy and the corresponding lossless case.

• Polymers (dry electrolyte), with typical capacities of
[10−3000]µF and γC = [10−6−10−4] s at 100Hz.

• Ceramics, where the “MLCC” ceramic chips have
the lowest ESR, about 1/3 of Polymers. However,
it seems that ESR rapidly increases towards the au-
dio domain and little information is available. Their
capacities range between [1 pF − 100 µF ] but for
the very low ESRNP0 typeC is maximum 0.1 µF .
It should be noted that these components are sus-
ceptible to contact noises due to their piezo-electric
side-effect.

• Film capacitors, especially the Polypropylene type
have very low ESR. But as the ceramics, no audio
frequency information is provided. The capacity ranges
between [10 pF − 1mF ].

To obtain meaningful conclusions between theory and
practice, we prefer a fully quantified Polymer capacitor.
We choose a Nichicon E5 series 820 µF , 6.3 V capacitor
with RC = 18 mΩ at 100 Hz (descending to 5 mΩ at
100 kHz) and γC = 1.5× 10−5.

3.1.3 Conclusion

The resulting lossless singleLC frequency is ω0ll = 2π 1185.
While these components are far from the most optimal
choice, the results will allow a clear comparison to the the-
ory. The characteristic impedance is relatively low:

�

L/C =
0.16 Ω. γL√

L
= 2π 51 is below the fundamental frequency

of about 230Hz and 1
γC

= 2π 104 lies far above ω0ll.
Using equations (7), the frequency evolution of the phase

velocity and attenuation coefficient is calculated for this
case.
Figure 3 represents the evolution of the phase velocity rel-
ative to the constant lossless velocity, so that a constant
value of 1 would indicate an absence of inharmonicity. A
corresponding lossless case is added to illustrate the effect
of the numerical dispersion. As predicted, below ω = γL√

L

the velocity drops and at high frequencies, the dispersion
due to losses counteracts on the numerical dispersion.
Figure 4 shows α(ω) represented by the real part of Γ.

The globally increasing progression is explained by the ω
factor in its expression.

The resulting entrance impedance, as calculated by equa-
tion (11) is shown in figure 8, together with the numerical
and measured curves.
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Figure 4. Evolution of the attenuation coefficient α(ω)
over frequency.
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Figure 5. Temporal input voltage and current signals dur-
ing a self-sustained operation with a nondimensional input
voltage or “mouthpiece pressure” of 0.65.

3.2 Numerical simulation

Before the final construction, we usedMatlab and Simulink
to perform a numerical simulation on the proposed model
with the chosen components. This allows to observe the
eventual influence of aspects neglected in the analytical
study, such as the approximated discretization at the bor-
ders, the inductor’s inherent capacitance CL and the ca-
pacitor’s parallel conductanceG. The entrance impedance
curves are presented in figure 8.

We also added a single reed exciter model [16–18] and
we empirically confirmed a self-sustained operation. The
resulting input current and voltage signals are shown in fig-
ure 5 and the spectrum of the latter is represented in figure
6.
The nondimensional oscillation threshold is found to be

minimum 0.6, which is above the usual clarinet thresholds
[13], what can be explained by the relatively low modal
amplitudes and quality factors and the prominent inhar-
monicity of our resonator. However, the spectrum, wave-
form and sound are similar to a simulated clarinet in the
“beating reed” regime [16]. The fundamental frequency is
found at f0 = 225.2Hz, which is slightly below 230.7Hz,
the frequency of the first resonant peak. This may be clar-
ified by the numerical dispersion that turns down the fre-
quency of the higher resonant peaks.

3.3 Concrete realization and measurement

An actual realization of the proposed transmission line is
constructed and is depicted in figure 7. Two equally valued
capacitors are put in series to obtain the needed half-valued
capacitance at the open entrance boundary. By measuring
the voltages surrounding an additional appropriate resis-
tance put in series with the transmission line entrance and
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Figure 6. Spectrum of the input voltage signal with a
nondimensional input voltage of 0.65.

Figure 7. First prototype of the discrete harmonic trans-
mission line.

applying a voltage sweep, both the input voltage and cur-
rent can be measured, so that the entrance impedance can
be derived. The result is added to figure 8 and discussed in
the next paragraph.

3.4 Theoretical and measured Ze comparison

Figure 8 shows the spectral modulus and argument of the
analytical, numerical and measured entrance impedances
of the first discrete transmission line prototypewith a shorted
end condition. An open end condition is also verified and
results in similar characteristics, but for even harmonics.
The analytical approach results in an entrance impedance

with four clearly visible modes. The fundamental frequency
is found at f0 = 230.7Hz. The plotted lossless harmonics
confirms the earlier shown inharmonicity curve: the sec-
ond impedance peak is still very close to 3 × f0, and later
peaks diverge more and more downwards.

The first four nondimensional amplitude peaks are foud
at a0 = 5.3, a1 = 3.1, a2 = 1.8, a3 = 1.3. And the corre-
sponding modal quality factors are Q0 = 5, Q1 = 7.2,
Q2 = 7.0, Q3 = 6.6. The quality factor is inversely
related to the damping ratio ζ = 1

2Q , which should be
smaller than 1 to obtain an underdamped system. While
that condition is satisfied, this order of damping ratios only
allows very short free oscillations, so that a self-sustained
use is advised to obtain sounds. To compare with musi-
cal acoustic examples, the quality factor of clarinets lies
between 10 − 50 and wooden soundboards have their Q
between 10 − 150, while those of strings vary between
100− 104 [19].

Comparing the numerical with the analytic curves, we see
that a very good match is obtained. This is found to be in-
dependent of the additional properties, CL and G, of the
concerned components.
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Figure 8. Input impedances of analytical, simulated and measured transmission lines.

Also the measured impedance is close to both predic-
tions. At first sight, we observe an upwards inharmonic-
ity. However, it is likely an actual higher RL value that
brings down the f0 to 196.7 Hz. The amplitudes at the
resonant frequencies and the quality factors closely cor-
respond, while the anti-resonant peaks at low frequencies
seem to descend more. Also, unlike the analytical and nu-
merical approach a fifth harmonic is visible.

4. CONCLUSION AND PERSPECTIVES

The conception of a new electronic harmonic resonator
with musical potentials is proved to be realizable. The
measured entrance impedance of such a discrete transmis-
sion line with eight nodes is found to be very similar to
the analytical and numerical approaches that use the cor-
responding datasheet values. This means that apart from
capacitance and inductance, only the equivalent series re-
sistance of both capacitors and inductors is to be consid-
ered for the design.

The lack of relevant ESR information in the audio fre-
quency domain made us choose components with rather
low characteristic impedance. However, more experimen-
tal models can be constructed that will likely feature much
higher relative amplitudes and quality factors. Such an op-
timized model is already under construction, using eight
20mH inductors and 1 µF film capacitors to obtain about
the same fundamental frequency, a more convenient char-
acteristic impedance of Zc = 140 Ω and roughly estimated
quality factors of around 300! However, as it concerns
“common mode” inductors, the current ratings are very
low, especially for an additional direct current flux, so that
a wind instrument design might be out of the question.

To cope with the numerical dispersion, we could add an
adapted circuit at one of the boundaries that will intro-
duce an opposite dispersion. However, as theoretically
shown, increasing the node density, an equal relative losses

and less dispersive model can be obtained by choosing the
same inductors and smaller capacitors of the same type.
This also is of interest when considering the perspective to
play higher notes by moving the end boundary condition
to a reduced number of nodes, just as releasing a key on a
wind instrument...

Another perspective is the addition of electric circuits act-
ing as convenient nonlinear exciters. These can be based
on models of (single, double, free, lip or “flute”) reeds, a
bowing exciter [5, 19] or any other nonlinear relation that
will result in a self-sustained oscillation. It would be desir-
able to use circuits with the same simplicity as the trans-
mission line. However, equivalent circuits are not guaran-
teed for any nonlinear system. We think about FET’s that
might provide a single-reedmechanism equivalent, and also
valves are considered, as they are reputed for their pleasing
effect on sound.
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