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Summary
As a special class of Non Linear Dynamical Systems, self sustained musical instruments can exhibit peculiar behaviours
related to bifurcation and chaos theories. While many quasi periodic occurrences in woodwinds and bowed strings have
been reported, only a few period doubling scenarios have been observed in musical instruments, and most of the time
they have been obtained through numerical simulations or specially designed hybrid experimental set-ups far from
musical situations. We present here a set of experimental results, all related to this period doubling scenario and always
in direct connection with musical performance on wind instruments and voice. We show that at least three period-
doublings can be obtained on a trombone, that the crumhorn and the bassoon can oscillate in the same way and that
traditional singers, and in some cases classical singers, exhibit phenomena clearly linked with this scenario. Finally,
from the whole set of experimental results available for this particular set of multiphonic sounds we give some hints for
a general schema governing their musical production.

PACS no. 43.75,43.25

1. Introduction

The description of wind instruments as a special case of Non
Linear Dynamical Systems (NLDS's) has become nowadays
as classical as the linear description was some decades be-
fore. Numerical simulations and theoretical studies as well
as experimental works on woodwinds and voice have been
done which have proved the validity of this description
[1,2,3,4,5,6].

The basic tools needed for understanding NLDS's have
been known for at least a century and include linear expansion
and stability analyses at threshold [7]. These concepts allow
the study of self sustained musical instruments in terms of
bifurcations and transitions to chaos [8,9, 10].

Among the three classical scenarios known to be precur-
sors of chaos, only quasi periodicity [11] has been widely
met in musical signals produced by musicians [3, 12, 4, 5].
This scenario predicts that after a first bifurcation the be-
haviour of the instrument is described by a limit cycle in its
phase or state space, which corresponds to the normal peri-
odic sound of the instrument, and that a second bifurcation
may occur which may lead to a more complicated trajectory.
This trajectory may be a torus or a periodic trajectory with
a period doubling. In the first case, a third bifurcation may
give rise to a chaotic state described by a strange attractor in
the phase space. We do not discuss here in detail the different
possibilities, (-3-torus involving a third frequency or Curry
and Yorke model with only two frequencies-); the reader can
find in literature and references the information he needs.
The torus trajectory may be connected to a periodic orbit
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in phase space in case of a phase locking when the two (or
three or even more ) frequencies are in a rational ratio [8].
More generally the behaviour of the system corresponds to
a quasi-periodic state. This means that there is no simple
rational ratio between the base frequencies that have give
rise to the torus. A very important point is that this scenario
can only lead to chaotic behaviour under very restrictive
conditions about the implicated base frequencies. The most
important one is the non-harmonic relation that is necessary
between the base frequencies. This point is somehow in con-
tradiction with the skill that woodwind makers prove in ob-
taining quasi-harmonic relations between the resonances of
their instruments. Quasiperiodicity is a very common state
in mechanical, acoustical and musical systems, but in the
case of musical instruments it has never been proved that
it may lead to chaos, even if some hints of chaotic features
have been noticed. Triperiodic and quadriperiodic states have
been obtained, as is theoretically possible, when there is a
simple rational relation between the three base frequencies
[13,5, 14]. For this scenario, the determination of Lyapunov
exponents [14, 9] remains the only valid way to prove the
presence of chaos. Unfortunately, as far as we know, it has
never led to this conclusion for such systems.

On the other hand the most widely studied scenario, known
as period doubling scenario [15, 16,17], which always yields
chaos, has only been demonstrated for numerical and exper-
imental set-ups mimicking woodwinds, [18,2,3, 12] which
remain far from true musical situations. A few examples of
period doubling in woodwinds have been presented on an
isolated edge tone [19] or on trumpet tones [20] but, as far as
we know, there is no example in scientific literature of a more
complete cascade in a musical situation. The first report in
musical acoustics literature of such a phenomenon, produced
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Figure 1. Sonagraphicrepresentationof a trombone octave multi-
phonic. This representationshould be understoodas a spectral bi-
furcation diagram.The bifurcationspoints are representedby thin
verticallines.

resonances [30]. Musicians have known for a long time and
it has been proved [12, 5] that normal fingerings are able
to produce multi phonic sounds as well as special fingerings
even if the acoustical resonances are harmonically related.
Moreover the same fingering does not always give the same
perceived multiphonic sound or the same spectral content.
The main characteristic of multi phonics is the wide variety
that can be obtained through changes in the main parameter
that is under the control of the musician: the embouchure. It
is particularly true for instruments where no fingerings are
used, as is the case for the trombone.

One of the authors was extremely lucky to work with a
trombonist of the "Ensemble Intercontemporain" [31], and
to record under his control a wide collection of sounds. This
exceptional musician is able to produce an important number
of different multiphonics: most of them are quasiperiodic, or
quasi periodic with phase locking [29], but some others,
which he calls "octave multiphonics" do not correspond to
this description.

To obtain these peculiar sounds the musician begins to
playa periodic sound on an upper partial of the instrument
(in the presented example it is the sixth partial corresponding
to the note F4, but it can also be obtained on another par-
tial). After this normal sound, he changes his embouchure
and obtains something like the third partial of the instru-
ment, approximately one octave lower; then he bifurcates
once more and produces a rough sound that should to be
considered again as a sound one octave lower. After another
embouchure modification he produces what appears to be,
after spectral analysis, a sound with a missing fundamental
lower than those normally possible on a trombone with this
position of the slide. This (missing) fundamental frequency
does not correspond to a resonance of the instrument. The
sonagraphic analysis presented on Figure 1 shows clearly
this cascade of bifurcations. A first division by two of the
fundamental frequency (period T) is immediately followed
by a division by two (period 2T) and then by less obvious
divisions, which may correspond to other period-doublings.
It suggests that the sound production of these «octave mul-
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When playing multiphonic sounds [28,29], experienced mu-
sicians mix a great deal of know-how and a lot of knowledge.
Since nothing is nowadays absolutely established and taught
in music schools concerning this particular class of musical
sounds (even if catalogues of multi phonics exist for some
instruments), each player has a particular set of multiphonics
and uses his personal technical solutions to produce them.
On woodwinds, it is often stated that multiphonics are al-
ways defined by special fingerings which give non harmonic

2. Period doublings in a trombone

by a musician and explicitly related to the period doubling
scenario, is a recent work on the bassoon [21].

The aim of this paper is to show that period doublings
may be met in a great number of musical situations, all con-
cerning classical or renaissance musical instruments played
by experienced musicians or singers. It is not our purpose
to compute the Lyapunov exponents or the correlation di-
mension on chaotic signals or to give a complete theoretical
or numerical model. The following experimental results are
presented here: a cascade of period doublings obtained by
a trombonist, playing at a high level (what he calls "octave
multiphonics") the same phenomenon in various double reed
instruments and finally in the voice. All signals have been
recorded in reproducible laboratory conditions with the ex-
ception of the two ethnic musical examples.

A special case of musical wind instrument is that of the
human voice. For this particular mechanical and musical
system, the period doubling occurrence has been known for
years [22, 23, 24, 25] and has been numerically simulated
and theoretically studied by numerous researchers [26, 27]
through two-mass models, for example. Nevertheless these
occurrences did not concern musical performance but voice
disorders or vocalisations by newborn children. We give here
two examples of period doubling in traditional singing that
can be compared with the experimental data recorded with
a singer who has developed a great skill in this kind of low-
pitch voice production.

The signals have been analysed both with the classical
tools of signal processing and those of Non Linear Dynam-
ical Systems (mainly delayed Phase Space Representations
-PSR- and Poincare Sections), and by direct sonagraphic ob-
servation. The first type of analysis has proved to be powerful
in situations [3] where the duration is long enough and where
the harmonic content is not too high. In all other cases the
spectrographic analysis has been used. It gives a direct access
to a spectral bifurcation diagram. We do not give here any
detailed information about the properties of NLDS analysis
that are beyond the scope of this paper; only the main useful
basic ideas are presented. The reader is invited to refer to
specialised publications [8, 10] for more information.

Enlightened by these experimental analyses we then give
some hints for a qualitative explanation of such behaviours,
and we propose some possible solutions to obtain such period
doubling cascades in other instruments such as clarinet or
saxophone.
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Figure 2. Reconstructed delayed Phase Space Trajectory of a periodic
signal of trombone. The delay chosen is one quarter of the period
of the fundamental frequency. This general behaviour very near to a
closed curve is obtained for the sustained part of woodwinds if their
harmonic content is small enough.

tiphonics» can be interpreted as a period-doubling cascade
from the sixth partial of the instrument. As the final sound
does not necessarily correspond to any resonance of the in-
strument the level of the lowest components of the sound is
very weak. These components often appear only as traces
on the sonagraphic representation. This first analysis, which
corresponds to a spectral bifurcation diagram, can be im-
proved and confirmed with another kind of representation in
phase space.

In a phase space representation (PSR) a periodic signal
gives a closed curve, that is, a strictly periodic signal can
be represented as the limit cycle of a simple oscillator on a
2-D surface. Under normal playing conditions, stable sounds
of musical instruments give such curves (Figure 2). This
normal and periodic sound has been obtained after a first
bifurcation and is of frequency F. The period-doubling sce-
nario replaces this periodic signal by another one showing
a fundamental frequency divided by two. This occurs at the
bifurcation point. Since the frequency of a nonlinear system
basically changes when increasing the control parameter, the
new period is not exactly twice the original one but twice
that of the fundamental frequency just before the bifurcation
which may slightly differ from F.

How can we distinguish a signal produced by a system
which has bifurcated and whose period has doubled from a
signal produced by a system in which the second harmonic
is more intense than the first one? Formally it does not seem
possible. The trajectory of a "first period doubling" and that
of a periodic limit cycle in which the second harmonic is
very strong have similar shapes. Nevertheless on most phys-
ical systems it remains true that a limit cycle, for infinitely
small amplitudes, corresponds either to a quasi-sinusoidal,
or to one presenting a strong first harmonic. This is the case
of the square oscillations obtained by Maganza et at. [2] or
Grand [32]. Moreover, at the bifurcation point, the spectrum
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of a period doubling always presents very weak components
corresponding to the odd multiples of the lowest component
F /2. So an oscillation with frequency F /2 following an os-
cillation at frequency F with a very strong second harmonic
2F or close to it, should be interpreted as a first period dou-
bling. It seems that it corresponds to the situation represented
in Figure 3a. This assumption is well confirmed by the other
bifurcations (Figures 3b and 3c). The third period doubling
is not as clear as the previous one but it is visible as a folding
of the trajectory (Figure 3c). The last part of the signal does
not give any more information. It is very difficult to identify
other foldings on the PSR and it is absolutely impossible to
say whether the musician reaches a chaotic situation without
computing the Lyapunov exponents. Since the signals are too
short and basically unstable for the musician, such a deter-
mination is unfortunately beyond our possibilities. Anyway
one must keep in mind that the period doubling scenario is a
clear indication of a route to chaos whenever a period tripling
is detected.

How does the musician produce these sounds? First it is
important to note that this kind of sound is fundamentally
different from what is obtained when the musician is singing
in the instrument. There is no production through the vocal
tract of any sound one octave lower. There is only one ex-
citatory system. A woodwind player can control one easily
measurable parameter, the blowing pressure, and many oth-
ers that are very difficult to evaluate. All these parameters
together define what we call the embouchure. It includes the
position of the lips, their tension, their opening and many
other "physical" parameters that are difficult or impossible
to measure such as the lips, and all their mechanical proper-
ties (mass, stiffness, damping ... ). So we have to trust in the
musician's sensations. The only thing he is able to say is that
he obtains these sounds by relaxing the embouchure.

3. Period doubling on reed instruments

Some reported results on double-reed instruments may also
be interpreted as possibly chaotic features or period dou-
blings, even if the authors who presented these results did
not give such interpretations. For instance, some "doubled
signals" can be found in Barjau [33]. It is also known from
organ-maker's knowledge that organ pipe reeds with a bad
curvature sound at a lower frequency than expected but with
a poor musical quality [34]. Figure 4 presents the spectro-
graphic representation ofthe sound produced by a bad adjust-
ment of the reed of a Cliquot organ pipe at the Cathedral of
Poi tiers (E4 'hautbois du n~cit'). The tone is unstable and bi-
furcates quickly to a perfectly audible period doubling. These
observations suggest that period doubling cascades may be
possible on reed instruments.

We have chosen to experiment on a very simple instru-
ment, the crumhom, whose main advantage is the absence
of contact between the musician and the double reed. An-
other interest of this unusual Renaissance instrument is that
the reed is placed in a small cavity. This small box has res-
onance frequencies higher than those of the bore. Using a
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Figure 4. Sonagraphic representation of an E4 reed of Poitiers Cathe-
dral Cliquot's Organ. The note is repeated and after a transient
where components are visible at half the expected frequency, the
pipe sounds at its frequency then bifurcates to the lower octave.
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Figure 3. Phase Space Trajectories of parts of the signal analysed on
Figure 1. The signals are chosen on the stable parts corresponding to
the various bifurcations noted on Figure 1. a) can be interpreted as
a periodic signal with a strong second harmonic, or as a first period
doubling. It corresponds to the part of the Figure 1 marked '2T' b)
and c) are obvious period doublings and correspond respectively on
Figure 1 to the parts' 4T' and' 8T'.

rather soft plastic reed, and decreasing the blowing pressure
after a normal sound, the crumhorn exhibits the same kind
of period doublings as the trombone, for nearly all the fin-

Figure 5. Son agraphic representation of the period doubling cascade
obtained on a crumhorn when the blowing pressure is continuously
decreasing: a) normal periodic sound b) rise of subharmonic com-
ponents indicating the first period doubling c) shift in frequency d)
second period doubling e) possible chaotic zone f) period tripling

gerings (Figure 5). Moreover it is possible to identify a zone
of unstable spectral characteristics after the second period
doubling which may be chaotic. A clear period tripling fol-
lows this zone. As it is well known, the chaotic part of the
bifurcation diagram is followed by a periodicity window of
period three in a classical period-doubling scenario. It is then
possible to conclude that, on this particular instrument, one
obtains a quasi-complete period doubling cascade when de-
creasing the blowing pressure (which is the only possible
control parameter). Two clear period- doublings, a "chaotic"
or unstable zone, and a period tripling followed by another
unstable zone are evident on the spectrogram. It is unfortu-
nately very difficult, even with an artificial blowing system,
to stabilise the' chaotic' part. The cascade is obtained by con-
tinuously decreasing the blowing pressure. That means that
the relative value of the pressure is closer and closer to the
atmospheric pressure at each bifurcation. The pressure range
where the signal is supposed to be chaotic is then very small
and any variation of temperature or any movement around
the instrument leads to the periodicity window. So we can-
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Figure 6. Sonagraphic representation of period doublings obtained
on a bassoon whose reed has been specially designed to help this
kind of production.

Figure 7. Same representation as on Figure 6 of period divisions ob-
tained on the same bassoon but with a normal reed. Period doublings
as well as period tripling are clearly visible.

not absolutely conclude the presence of chaos, even if this
is the normal behaviour which takes place between a period
doubling cascade and a period tripling. To our knowledge
this cascade is the first complete one obtained in a musical
instrument. One important feature is that it has been obtained
through a blowing pressure decrease and using a soft reed,
and that it can be produced by a musician or with a blowing
machine.

Approximately at the same time we were working with
the trombone and the crumhom, we were in contact with a
bassoonist who had designed a reed giving him the ability
of playing in the contrabassoon range [35, 21]. His main
idea had been to soften and enlarge the normal reed of the
bassoon. The common way to obtain a softer reed is to make
it carefully thinner with a cutter blade. The result is a very
thin reed that looks like a contra-bassoon reed. The bassoon
with this reed sounds very poor in the first regime, is hard to
play in the second one but is able to produce sounds one and
sometimes two octaves lower than those normally obtained
with the fingering used. This phenomenon is possible on the
whole first register of the instrument but calls for a skilled
player. Again there is no resonance corresponding to the
fundamental frequency. A careful examination of the signal
in the time domain shows that the transition is of the same
kind as for the trombone and the crumhom. It corresponds to
what is expected for a period doubling scenario: oscillation on
a limit cycle of period T, then a first bifurcation leading to a
period 2T and another bifurcation which may sometimes lead
to a second period-doubling. This corresponds to a musical
sound two octaves lower which is produced with increasing
difficulty by the player! An analysis using a spectrogram
(Figure 6) makes this period-doubling evident.

On bassoons, period doublings are not only possible with
a specially designed reed. The same musician was able to

produce them with a normal reed. The musical range where
this phenomenon takes place is smaller than with the spe-
cial reed. It is possible to obtain period doublings only on
a few first register notes with an appropriate embouchure
(Figure 7). From a technical and musical point of view the
musician uses a relaxed embouchure where the reed is blown
at low pressures. This is easily obtained on the 'large' reed
and less easily on the 'normal' reed but the result is the same
as for the crumhom where under-blowing produces the con-
trolled bifurcation cascade. The only difference is that, in the
case of the crumhom, there is an obvious and unique control
parameter, the blowing pressure, which is not the case for
the bassoon. The reed is mechanically softened making it
thinner and larger, the blowing pressure is lowered but the
other embouchure modifications are far from our ability to
measure them.

4. Voice

Various models can describe the voice but the more recent ap-
proaches connect the physical behaviour of this very common
physical system with the theory of Non Linear Dynamical
Systems [36]. Their results in terms of stability suggest that it
is possible to obtain various scenarios of chaotic transitions
in such a system. Some experimental work and numerical
simulations showing period-doublings in disordered voices
are given in the references. Though they prove the possibil-
ity of the phenomenon, in the real cases presented (babies
crying for example) there is no controlled and musical use of
this possibility. We have carefully looked at known "abnor-
mal" musical voiced occurrences and found some obvious
period doublings. On a time domain representation as elec-
troglottography (Figure 8) one can easily see the transition
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Figure 8. Time domain and sonagraphic representation of a period
doubling obtained on a voice signal recorded by electroglottography.
The bifurcation is clearly visible on the two representations.

Figure 10. Various bifurcations in a recording of South African
singers. The initial period is divided by two and even by three. The
normal fundamental frequency is marked on the figure. Using period
divisions the women can sing lower than 100 Hz.

Figure 9. Period doubling on a record of traditional Tuva singers.
There is not any energy in the lowest components of the voice during
the part marked 'T' which correspond to a fundamental between
90 Hz and 125 Hz. The 'missing fundamental' obtained after the
period doubling allows a frequency around 65 Hz.

on a demonstration done by a musician of a known Tibetan
technique for singing with a low voice. In that particular ex-
ample, one of the authors, who has learned and exercised this
technique, sings a note (B3) and, through modification of her
voice, jumps to the lower octave (B2). This shows that this
special kind of 'passagio' is perfectly obtainable on singing
voice, and not only on disordered voices. As in the bassoon
case it has not yet been used as a musical effect in classical
western music but is known, understood and can be used by a
singer as a possible technical gesture which is of normal use
in Tibetan music. This has been the case for 'normal multi-
phonics' for years. They were first employed in traditional
music or jazz and only included later in the normal classical
contemporary musical language.

Concerning multi phonic production, traditional music
presents a great number of interesting features from an acous-
tical point of view. Another example is given here. A record-
ing has been extracted from a traditional singing performance
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of Asian Tuva singers (Figure 9) [37]. The singers exhibit
very low pitch. On the sonagraphic representation one can
easily see that after a first melodic glissando of fundamental
frequency going from 90 Hz to 125 Hz a bifurcation appears
with an obvious division by two of the fundamental fre-
quency giving a new fundamental around 65 Hz. As in the
former example, the signal corresponds to a bifurcation lead-
ing to a sound one octave lower. This stable period-doubling
seems to be very often used in this way to obtain unusual
low pitches, particularly in this region not so far from Tibet
where it is known as Kangiraa style (where Kangiraa means:
'to speak in a husky voice').

Another traditional music exhibits the same kind of phe-
nomena. The South African women of the Xhosa ethnic
group [38] used a special and very peculiar singing style
known as "ordinary Umngqokolo". On the recorded sounds
one finds first the melodical fragment sung with a normal
voice (mean pitch around 200 Hz) by a woman, then the
"Umngqokolo" version where the perceived pitch is divided
by two or three. The spectrogram (Figure 10) presented here
makes evident this well-controlled technique showing sub-
tle alternations between period doubling and period tripling.
Another style, "umngqokolo ngomqangi" produces a con-
stant period doubling on two different fundamental frequen-
cies, a tone apart, as for musical bow playing. Such singing
technique with period doubling (or tripling) produces fun-
damental frequencies in a rather low range for women, be-
tween 70 Hz and 130 Hz, and enable them to produce spectral
melody on higher harmonics, through mouth resonances.

5. Period doubling production and the Non Linear part
of wind instruments

Such evidences of period doubling scenarios performed by
musicians and singers, and included in musical sequences,
raise many questions. It is beyond the scope of this paper
to give theoretical answers to these questions. We only want
to give some hints that could help to better understand how
these phenomena occur.
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First, how does the musician produce these sequences?
There are partial answers coming from the trombone pro-
ductions where the musician has a very relaxed embouchure.
Some other useful features can be extracted from the
crumhorn behaviour where one uses an under-blown soft
reed closed in a small box. On the bassoon, the mechanical
characteristics of the reed (large and soft) are important but,
as it is possible to obtain the same phenomenon on a normal
reed, this suggests that some other embouchure parameters
are used to produce these sounds even if one finds again
the same low blowing pressures to play these sounds. Again
the musician is recommending a very relaxed embouchure. A
second question is: can we obtain such signals on single-reed
instruments such as clarinets or saxophones? Up to now, all
reported results concern double-reed systems (lips and vocal
folds are double-reeds). To try to answer we have built a very
thin reed for a clarinet. This reed is as thin as a sheet of pa-
per and has been obtained from a soft reed (Vandoren no.2)
keeping the same profile but making it as thin as possible.
The instrument is no longer playable in a "normal" way, but
with an extremely soft blowing and a loose embouchure it
is possible to play it on the first register with a terribly bad
timbre. Then by decreasing carefully the blowing pressure
an unstable period doubling can obtained. Skilled players
are able to sustain it. It has not been possible to do the same
on a saxophone. All these preliminary proofs show that pe-
riod doublings can be obtained provided three conditions are
fulfilled at least: 1) an extremely soft reed or relaxed vocal
folds or lips, 2) low blowing pressure for the normal sound,
3) a decrease of the blowing pressure to obtain the period
doubling.

The sound production in woodwinds involves at least three
important parameters: the woodwind resonances defined by
the bore impedance, the nonlinear part which corresponds to
the effect of the reed on the upstream flow and the control
parameter defined by the musician's embouchure. The later
may include vocal tract resonances as well as mechanical
parameters such as damping, reed resonance frequency etc.
An experienced musician can play on all the fingerings of
a clarinet or a saxophone not only periodic sounds but also
multiphonics of various timbres changing his embouchure
from loose to tight. One can vary, only through embouchure
control, from periodic sounds to a wide variety of multi phon-
ics. This is well known, for example, on the most atypical
note of the saxophone, the medium G fingering, where small
changes in the lower lip position may lead to various sounds
between the two first registers. It seems to indicate that the
understanding of the whole behaviour of woodwinds lies not
only in the resonance curves but also in the knowledge of the
embouchure parameters. One may think that the musician
knows how to choose the shape of the non-linear function
to produce one sound or another. 'Octave multiphonics' or
period doublings do not differ from other behaviours of a
woodwind. One may think they are the consequence of an
interaction with the vocal tract producing satellite frequen-
cies exactly at half the frequency of each peak of the periodic
normal sound. It may have been possible on the trombone
and on the bassoon where the musicians can adjust the reso-
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nances of their vocal tract, but not on the crumhorn where one
cannot adjust anything and where it is possible to produce
period doubling on nearly all the fingerings.

Is it possible to introduce these features in a general theo-
retical scheme of sound production in woodwinds including
this special kind of multiphonic?

Some partial answers are available in the literature and
particularly in [39, 30,29, 12,40,41].

The most well known period doubling scenario involves
the iteration of a quadratic function like y = Ax(l- x) [16].
An acoustical equivalent of this scenario has been obtained on
electro-acoustic systems mimicking musical instruments by
increasing the gain A which is taken as the control parameter
of the system [18] for the quadratic function. Increasing the
gain (A) corresponds to sharpening the shape of the non-
linear function used to represent the effect of the reed. This
strictly corresponds to a "loose embouchure" as defined by
Backus [30]. So it is not surprising to obtain such a cascade
on the trombone with the lips very relaxed, on the crumhom
for an under-blown embouchure with a soft reed and with
an especially designed soft reed for the bassoon. On the
other hand it is surprising that the cascades are only obtained
by decreasing the blowing pressure. Anyway the scenarios
observed in true musical situations and reported here follow
very precisely those predicted by the very crude models used
by Maganza et at. [2].

More sophisticated models [42] where the embouchure
is described through the Taylor expansion of a non linear
function have recently shown that one important parameter
in the non-linearity is its cubic term, in other words the
asymmetric shape of the non linearity. This work [32] has
shown the importance of this shape. It is shown that the
cubic term of the non linear function is a parameter more
important than the bore impedance to determine the kind of
bifurcation (direct or inverse) that is obtained by changing
the control parameter. For non-linear functions that are too
symmetrical, the result is not typical of a real instrument. The
basic description of a woodwind involves two equations: a
linear one with delays and a non-linear instantaneous one
(see MacIntyre 83 for more details). The behaviour of this
model is extremely rich. One can derive from it numerical
models including non-linear differential delayed equations
and phenomenological models [7, 40, 41]. These models,
widely used in fluid mechanics, show that it is perfectly
possible to obtain chaos following a period doubling cascade
as well as quasi-periodic scenarios by changing the shape
of the non-linear function. They have the advantage to use
only one variable, the acoustic pressure at the bore entrance
section. Taking the blowing pressure as control parameter and
decreasing it, they allow the simulation of period doubling
scenarios. Unfortunately these models are phenomenological
ones and it is difficult to connect all the numerical parameters
with physical parameter. However they are able to reproduce
results close to what we measured on the crumhorn.
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6. Conclusion

The period doubling scenario, often known as Feigenbaum
scenario, has been described in this paper for woodwinds.
The identification of such a scenario in natural musical
sounds allows a more complete description of their general
behaviour. For obtaining such peculiar sounds on woodwinds
the embouchure seems to be one of the main control param-
eters. This control parameter acts on the shape of the non-
linear function linking the acoustic pressure to the flow at the
input section of the instrument. To obtain period doublings
on double reeds and lip reeds it seems necessary to soften the
reed orland to relax the embouchure which must be blown
very softly, that means with a blowing pressure lower than
usual. The fact that period doublings have never been ob-
served before on single reed instruments with normal reeds
and that they can be observed with a clarinet reed reduced to
a thin blade of cane confirms this point of view. This allows
us to relate the period doubling effect mainly to a very loose
embouchure, something which is only possible with very soft
reeds and at low blowing pressures.

All the examples presented here share a common aspect.
They belong to musical performance or are close to it. They
concern mainly musicians, highly educated in classical or
in traditional music. They show that period doublings are
not just laboratory experimental phenomena concerning only
physics. By practice and will, musicians have experimentally
determined the parameters which allow the stable and repro-
ducible emission of such unusual sounds. It is worthwhile
noting that physicists looking for very simple theoretical and
numerical models for woodwinds have first described these
sounds that allow to 'play' one octave lower. Their models
remain far from reality but they are sufficient to follow the
scheme we have obtained experimentally, for example, on
the crumhorn. In some sense many models, excepting that
of Mac Intyre et al. [1] but including that of Maganza et
al. [18], can be understood as phenomenological ones. This
means that they are built on very simple equations where the
parameters cannot really be related to the physical parame-
ters of the studied system but where the behaviours obtained
follow very precisely those reported in experiments. It is
very interesting to note that other divisions, mainly by 3 or
5 of the fundamental frequency that can be theoretically ob-
tained during a period doubling scenario and are not often
found in experimental literature, are sometimes obtained by
musicians. We have reported here divisions by 3. Some divi-
sions of the fundamental frequency by 3 or by 5 have been
experimentally obtained on bowed strings. This may be re-
lated to the same scenario as well as to wolf note production
[13]. Nevertheless it seems difficult for a musician to control
the whole' glissando' from period I to period 3 through the
period-doublings and the chaos preceeding the periodicity
window. In the absence of period doublings followed by pe-
riod tripling it is not possible to conclude that the divisions
by 3 or by 5 belong to a period doubling cascade. They may
also be the result of a quasi periodicity scenario with phase
locking and a ratio 1:3 or 1:5 as has been demonstrated by
Puaud et al. [13]. Anyway, we have shown that more than
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successive period-doublings are possible on various classical
instruments. This means that this kind of' octave multi phonic
sound' belongs to the normal and musical range of, at least,
woodwinds.
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