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The sound of the electric guitar is strongly dependent on the string vibration. Where a mode of the

structure coincides with a mode of the fretted string, coupling between the string and structure occurs

at that “deadspot.” The coupling significantly lowers decay time, leading to the name [Pat�e, Le

Carrou, and Fabre (2014). J. Acoust. Soc. Am. 135(5), 3045–3055]. But how the guitarist affects the

dynamic behavior of the structure by grasping the neck, holding the instrument with the strap, or lay-

ing the instrument on his/her thigh remains to be investigated. This is the aim of the paper. Two meth-

ods are proposed to identify the modal parameters of the electric guitar structure, either by a classical

modal analysis in simulated playing configuration, or by an operational modal analysis in real playing

configuration. For this latter method, modal parameters are identified from dynamic measurements

performed when each string is plucked. Both methods are compared and allow one to quantify the

modal frequency modification and the added modal damping, which depend on the player’s body-

part in contact with the structure and on the modal shape considered. Consequences of these modal

parameters on the modeled sound show that the player can increase the decay time close to a dead-

spot. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5130894

[AM] Pages: 3123–3130

I. INTRODUCTION

The sound of the electric guitar comes from the conver-

sion of the mechanical vibration of the string into an electric

signal. Consequently, the sound does not seem to depend on

the mechanical properties of the guitar body. However, in

the general case of stringed musical instruments, the modal

parameters of the instrument body may affect the vibration

of the string. While there are few studies on the electric gui-

tar, much research on violin and acoustic guitar dealt with

coupling phenomena in the case of the violin or the guitar.

For example, Gough (1980, 1981) studied the coupling

between the string and the body using an analytical model in

the case of the wolf-note phenomenon that appears in the

violin. Woodhouse (2004a,b) proposed several sound synthe-

sis methods and underlined the connection between the

modal parameters of the acoustic guitar body and the sound

of the instrument. More recently, Benacchio et al. (2016)

experimentally demonstrated the importance of the modal

parameters of the guitar body in the sound of the instrument

using active modal control. In the case of the electric guitar,

body-coupling may also, in some cases, affect the string

vibration, mostly when there is a frequency coincidence

between string and body modes. Pat�e et al. (2014) showed

that the decay time of solid body electric guitar tones is due

to the combined action of string’s intrinsic damping and

coupling-induced damping. It was notably shown that for the

electric guitar, this coupling mainly occurs at the neck

(Fleischer and Zwicker, 1999; Pat�e et al., 2014). However,

in the classic way of playing the electric guitar, ergonomic

studies (Marmaras and Zarboutis, 1997) showed that the left-

hand palm holds the neck and the left-hand finger presses the

string against the fingerboard. Thus, the left-hand may have

consequences on the neck vibration. Similarly, the player’s

body (e.g., stomach, thigh) is in contact with the body of the

instrument and may also modify the instrument’s vibration.

In order to measure these effects, previous studies used sim-

ulated playing configuration while the instrument was

excited by a classical system. For the electric guitar, the

experimenter held the neck, on which the shaker is fixed, put

the instrument on his knees, and the left-hand grasped the

neck (Fleischer, 2005; Fleischer and Zwicker, 1998, 1999).

For the violin, excited by an impact hammer, the experi-

menter held the instrument between his chin and his shoulder

in a “usual manner” (Marshall, 1986). Results of these first

studies clearly show that the player increases the damping of

the structure depending on the mode. But this experimental

methodology is quite far from a real playing posture.

However, musical instruments contain their own excitation

system that can be used to identify their modal basis with

Operational Modal Analysis (OMA) method, as performed

recently on a concert harp (Chomette and Le Carrou, 2015).

The aim of this paper is to identify the modal basis of

the electric guitar when it is played in order to quantify the

influence of the player on the dynamic behavior of the elec-

tric guitar structure. The OMA is presented in Sec. II. The

experimental method is proposed in Sec. III. Results are

shown in Sec. IV and a discussion highlighting the influence

of the player both on the electric guitar vibration and on the

sound of the instrument is given in Sec. V.

II. OMA IN TIME DOMAIN

The aim of the OMA is to identify modal parameters

using only measured data without knowing the excitation. Ina)Electronic mail: jean-loic.le_carrou@sorbonne-universite.fr
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the case of an unknown impulse response, OMA methods

can use the Linear Square Complex Exponential (LSCE)

algorithm introduced by Brown et al. (1979). In this method,

the time response of a structure hijðkDtÞ at the kth time sam-

ple Dt located at point i due to an impulse located at point j
can be expressed as the summation of N decaying sinusoids

whose frequency and damping ratio are associated to the rth

structural mode,

hijðkDtÞ ¼
XN

r¼1

/riArj

mrxd
r

e�nrxn
r kDt sinðxd

r kDtþ hrÞ; (1)

where xn
r and xd

r ¼ xn
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

r

q
are the non-damped and

damped frequency, respectively. nr is the damping ratio. /ri

is the ith component of the rth mode. Arj, md
r , and hr are a

constant associated to the jth response signal, the rth modal

mass, and the phase angle of the rth modal response, respec-

tively. The impulse response can also be written numbering

all complex modes and poles including conjugates from

r¼ 1 to r ¼ 2N,

hijðkDtÞ ¼
X2N

r¼1

Crije
srkDt; (2)

where Crij is the complex amplitude of the rth mode for the ith
input and the jth output. The poles sr ¼ xn

r nr6jxd
r associated

to the modes of the structure appear in complex conjugate

form. Consequently the complex exponentials Vr ¼ esrDt are

the roots of the polynomial Prony’s equation of order 2 N,

b0 þ b1V1
r þ � � � þ b2N�1V2N�1

r þ V2N
r ¼ 0; (3)

with b2N ¼ 1. By multiplying Eq. (2) by bk and sum over

k ¼ 0 � � � 2N, Eq. (3) gives

X2N

k¼0

bkhijðkDtÞ ¼ 0: (4)

By writing 2 N times Eq. (4) starting at successive sample

times, the coefficients bk are the roots of a linear system. In

practice, the system is overdetermined to increase the robust-

ness of the method and is thus solved using the least square

method. The poles are finally obtained using

sr ¼
1

Dt
ðjVrj6 j argðVrÞÞ; (5)

where arg denotes the argument of the complex poles. In

practice, the stable poles are automatically extracted using a

stabilization chart (Chomette and Mamou-Mani, 2018). This

diagram is based on several runs of the pole identification

process by using models of increasing order N. Physical

poles always appear around the same frequency whereas

mathematical poles tend to span the whole frequency range.

The typical stabilization criteria are chosen as equal to 1%

for the frequency and 5% for the damping. Poles are consid-

ered to be stable if their identified frequency and damping do

not exceed theses values between two successive runs at

order n and nþ 1.

In the case of a white noise excitation, OMA methods

can be based on the Natural Excitation Technique (NExT)

introduced by James et al. (1995). If damping is small, the

main assumption of the NExT method is that the correlation

function between two sensors located at points i and j can be

written as the impulse response function located at point i
due to an impulse at point j. Using the correlation function,

the method is then similar to the LSCE method. In the case

of string instruments, Chomette and Le Carrou (2015) have

shown that the NExT-LSCE method can be applied success-

fully for a plucked string instrument: the concert harp.

Indeed, the excitation induced by a string on the instrument

can be considered as a sum of damped harmonic compo-

nents. If the harmonic frequencies of the string are well sepa-

rated from the eigenfrequencies of the structure, modal

parameters can be easily identified. If the harmonic frequen-

cies of the string are close to the structural mode frequencies,

modified methods must be used (Mohanty and Rixen, 2004).

III. EXPERIMENTAL METHOD

In order to identify the modal parameters of the electric

guitar, two methods are performed: a classical modal analy-

sis and an OMA. For the former, one or a few accelerometers

are glued on the guitar while an impact hammer successively

hits different points of the experimental mesh. The classical

analysis is performed on the 54-point and 8-point meshes

shown in Fig. 1, whereas for the OMA only the 8-point mesh

is used. For the classical modal identification, the Least

Square Complex Frequency (LSCF) algorithm (Guillaume

et al., 2003) (implemented in Modan software) is used. For

the OMA, the 8-point mesh is composed of eight accelerom-

eters (PCB M352C65, PCB Piezotronics, MTS Systems

Corporation, New York) glued on the neck and another one

(PCB 352B10) is moved on the symmetrical axis close to the

played fret as shown in Fig. 2(a). This latter accelerometer

provides the reference signal for the OMA identification.

Note that the location and the size of the eight accelerome-

ters do not allow the first and sixth string to be mounted on

the guitar. Throughout this study, 1D-accelerometers were

used, so that only out-of-plane (vertical, i.e., perpendicular

to the fingerboard plane) accelerations are measured and

shown in this direction only in the following.

In order to quantify the dynamical modification of the

instrument when playing, three configurations are tested: with

sitting or standing player (i.e., two usual playing

FIG. 1. Two meshes used in the study: 54-point on the whole electric guitar

(black) on which point label 1 is shown and 8-point on the neck (gray) on

which Frets 0 to 16 are shown.
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configurations) and with nobody touching the instrument. For

the first two configurations, the right-handed player holds the

electric guitar with the strap or lays it on his right thigh. For

both configurations, the left-hand holds the neck and a finger

presses the string on the fret to set the vibrating length of the

string, as shown in Figs. 2(c) and 2(d). The last configuration

is used as a reference by laying the electric guitar on elastic

straps supported by a frame as to simulate free-free boundary

conditions (Pat�e, 2014), as shown in Fig. 2(b).

For the OMA, the player is asked to play several notes

along four strings (A2, D3, G3, and B3). The left-hand middle

finger presses the string against the fingerboard successively

at frets 2 to 16 every two frets. At the nut (denoted F0), the

left-hand does not hold the neck. The other strings are

blocked with the other fingers of the left-hand (this is a com-

mon practice for guitar players). All fundamental frequen-

cies of each note played are gathered in Table I.

IV. RESULTS

A. Classical modal analysis

1. Free-free configuration

A classical modal analysis of the complete electric gui-

tar was performed by using an LSCF method as previously

explained. Until 500 Hz, 6 modes are identified. Their modal

shapes are displayed in Fig. 3. First, two kinds of mode are

present: global (1) and local modes (2 to 6) with only neck

displacement. Second, among these modes, two are perfect

bending modes (1 and 6), two are perfect torsional modes (2

and 5), and two are a combination of bending and torsion

which are modes 3 and 4.

2. Simulated playing configuration

A first approach to quantify the player’s impact on modal

parameters of the electric guitar is to carry out a classical

modal analysis on an electric guitar. The guitarist then mimics

a playing situation on an instrumented guitar with accelerome-

ters glued on the fingerboard whereas an impact is provided by

the hammer close to the nut (on point 1, see Fig. 1). Results

are synthesized in Fig. 4 showing each co-localized Frequency

Response Function (FRF) measured for each left-hand posi-

tion. In addition, the FRF in the free-free condition is also plot-

ted highlighting modes 4 and 6 to be particularly present in the

instrument’s response. Modal parameters for modes 4 and 6

are gathered in Fig. 5.

Results clearly show that holding the electric guitar or let-

ting it lie globally affects the damping of the electric guitar in

a similar way for the two player positions. In detail, this modi-

fication depends on the left-hand position along the neck.

Mode 4 is more affected when the guitarist’s hand is close to

the neck head than mode 6, for instance. The closer the left-

hand to the anti-node of the mode, the higher is the damping.

Between the two configurations, subtle differences can be

seen in terms of damping, especially for mode 4. Modes 1 and

2, whose displacement amplitude at point 1 is already low, are

also affected by the left-hand position along the neck, adding

some damping and lowering the FRF amplitudes even more.

Note that modes 3 and 5 are not visible in the co-localized

FRF, as for these modes the displacement amplitude at point

1 is much lower than for the other modes, as shown in Fig. 3.

B. OMA

1. Free-free configuration

The OMA is applied on response signals measured on

the electric guitar neck for four strings. In order to test the

FIG. 2. (Color online) Experimental configurations for classical modal analysis when the electric guitar is free to vibrate with damped strings (a) and for OMA

in free-free configuration (b) and when the player is standing (c) or sitting (d).

TABLE I. Fundamental frequency in Hz and name of played note for each

string and each fret.

Fret String 5 String 4 String 3 String 2

0 110.00 (A2) 146.82 (D3) 196.00 (G3) 246.94 (B3)

2 123.47 (B2) 164.81 (E3) 220.00 (A3) 277.18 (C#4)

4 138.59 (C#3) 184.99 (F#3) 246.94 (B3) 311.12 (D#4)

6 155.56 (D#3) 207.65 (G#3) 277.19 (C#4) 349.23 (F4)

8 174.61 (F3) 233.08 (A#3) 311.13 (D#4) 391.99 (G4)

10 196.00 (G3) 261.62 (C4) 349.23 (F4) 440.00 (A4)

12 220.00 (A3) 293.66 (D4) 392.00 (G4) 493.88 (B4)

14 246.94 (B3) 329.22 (E4) 440.01 (A4) 554.36 (C#5)

16 277.18 (C#4) 369.99 (F#4) 493.89 (B4) 622.25 (D#5)
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method, the OMA is first performed on an electric guitar on

free-free conditions. For each of the four strings plucked,

most of the modes are identified. Figures 6 and 7 show

modal frequency deviation and modal damping, with a

marker for each string, and in blue for the free-free measure-

ment at the nut (fret 0). Blue markers are generally superim-

posed, showing that OMA for structural modes of the

instrument do not depend strongly on which string is used

for the excitation and, therefore, a perfect reproducibility of

the method. Moreover, modal frequency and damping are

found to be very close to those of the classical modal analy-

sis in comparison to previous results obtained for a concert

harp (Chomette and Le Carrou, 2015). Note that for torsional

modes, no physical poles are found for mode 2 and only one

with D3-string for mode 5 by the OMA algorithm. These

modes seem to be not well excited by the strings contrary to

bending modes.

2. Playing configuration

The OMA is then applied on accelerometer measure-

ments when the electric guitar is played by a person standing

or sitting. Modal frequency deviation and damping for all

left-hand positions along the neck and for all player configu-

rations are gathered in Figs. 6 and 7 for the first six modes.

On these figures, the color of the maker defines the player’s

configuration, “standing” in black and “sitting” in red, and

the markers’ shape indicates which string was played for the

OMA identification. In order to facilitate the interpretation

of the modal frequency deviation and damping, the modal

shape of each mode is also shown according to the neck

cross-section on the xz-plane (see Fig. 1) between the 16th

fret and the nut.

All modes are well identified by OMA with each of the

four strings as an excitation. Some modes are, however, bet-

ter identified than others, and this is due to (a) the string/

neck coupling point location with respect to the modal

shape, and (b) the fact that torsional modes are generally

excited less than bending modes. Modal frequencies are then

found close to modal frequency in free-free condition by

OMA or classical modal analysis with a variation less than

5% for modes 1 and 2 and less than 2.5% for modes 3 to 6.

This small impact of the player on the modal frequencies has

already been noted for local modes on an electric bass

(Fleischer, 2005). The variation range across frets in modal

frequency and damping (i) depends on the mode, and (ii) is

much higher than for free-free conditions.

V. DISCUSSION

But more generally, the variation of modal damping

with the note played (pressed fret) seems to exhibit a system-

atic behavior. This evolution is found to be directly linked to

the modal shape: the wider the mode shape displacement is

at fingering location, the higher the damping is. When the

player’s left-hand is close to a node of the mode shape, the

modal damping is little affected as shown for mode 3, frets

10 to 16, or for mode 4, fret 14 or mode 6 frets 2 and 4.

Neck modal dampings are modified by the hand grasping the

neck and the finger pressing the fingerboard, only if the

modal displacement is large enough at the fretting point. For

mode 1, the guitar’s body has a significant displacement.

Therefore, for this mode, the stomach touching the body acts

as an additional dashpot. That might be why, for mode 1, the

modal damping in playing configuration is found to always

be higher than the modal damping without player (classical

modal analysis) at about 5% for fret 0 (close to the modal

node). Note that for a sitting configuration, the thigh also

touches the guitar’s body and increases the damping for this

mode. Given the increased number of player/instrument con-

tact points, this player configuration does not generally

imply a higher damping than when the player is standing, as

these contact points [see Fig. 2(d)] are close to a nodal line

of mode 2 (see Fig. 3).

FIG. 3. Modal frequencies, modal damping, and modal shapes of the electric guitar in free-free configuration. Dashed lines represent the mesh at rest position,

black dots connected by solid lines represent the deformation corresponding to the modal shape.
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Concerning the additional stiffness brought by the left-

hand and the strap, a detailed analysis of the modal frequen-

cies identified by OMA can provide answers. Indeed, at fret

0, the player does not press the string on the fingerboard.

Therefore, the increase in modal frequency is only due to the

constraint applied by the strap on the guitar body. For the

other frets, when the fingers act on the neck close to a node,

modal frequency is found to be higher than for the sitting

player (see, for instance, Fret 2 of Mode 1 or Fret 14 and 16

for mode 4), confirming that the strap brings an additional

stiffness at the body in playing configuration. When the fin-

ger presses on the fretboard close to an anti-node, no system-

atic and significant modal frequency evolution is found with

respect to the free-free configuration for modes 1, 3, 4, and

6. Torsional mode 2 shows a noteworthy separation between

modal frequencies for each playing configuration. Modal fre-

quencies are higher when the player is sitting than when

standing. This could be due to changes in grip force between

these two configurations. Grip force is presumably higher

when the strap does not hold the guitar (sitting configuration,

compared to standing configuration with strap). We previ-

ously encountered the same modal frequency evolution for

torsional modes of more or less strongly held tennis rackets

(Chadefaux et al., 2017). This interpretation is consistent

with what the player felt during the experiment. For this par-

ticular mode, the left-hand seems to bring some additional

stiffness at the neck.

In this paper, two methods are used to identify the

modal parameters of the electric guitar when playing: in real

and in mimic situations when the player is sitting or stand-

ing. In order to compare them, modal parameters for modes

4 and 6 are plotted in Fig. 5. OMA results are gathered, for

each fret, as the mean value of the frequency and of the

damping computed from those identified from the four

strings plucked, as shown in Figs. 6 and 7. In Fig. 5, error

bars indicate the dispersion of the results and show, to some

extent, that the dynamic behavior of the instrument also

exhibits a variability that depends on all the contact points

between the instrument and the player (hand-instrument

neck, stomach-instrument body, thigh-instrument body). On

the whole, the results obtained by the two methods are found

to be very close. In order to have a global estimation of the

influence of the player on the modal parameters of the instru-

ment, the mimic situation with a classical modal analysis

can be a good approximation.

Getting back to sound, we recall that if the electric gui-

tar is heard through a loudspeaker, the sound originates in

the mechanical vibration of the string (sensed by the mag-

netic pickup). The string is attached to the instrument at both

ends. In other words string and structure are coupled and the

string’s modal parameters are modified by the presence of

FIG. 4. (Color online) Co-localized FRF measured at point 1 of the mesh

(see Fig. 1) for sitting (a) and standing (b) configurations. Numbers refer to

mode numbers in Fig. 3. FRFs are magnified around the frequency of modes

4 and 6 (corresponding modal shapes are also plotted).

FIG. 5. (Color online) Comparison

between modal frequency deviation (D
Freq.) and modal damping identified

by the OMA (circles) and by the classi-

cal modal analysis (crosses) for stand-

ing (black) and sitting (red) players.

For OMA, the circles are the mean

value of 4 measurements (on 4 strings)

and the error bars show the expanded

uncertainty with 95% confidence.
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the structure (Fleischer and Zwicker, 1998, 1999; Pat�e et al.,
2014). Former studies showed that the string’s modal damp-

ings (much more than the frequencies) depend on the con-

ductance (real part of the admittance) measured at the string/

structure contact point on the neck (much more than on the

bridge). When some string and structure frequencies come

close to one another, the corresponding string partial gets

abnormally damped (Pat�e et al., 2014). This results in timbre

changes (if string partials are damped) or decay times strong

reduction (if fundamental frequency is damped). The latter

phenomenon is also called “dead spot,” and should be

avoided (by, e.g., detuning the string or modifying the struc-

ture in order to push the frequencies further apart). Fleischer

and Zwicker (1998, 1999) characterized dead spots with the

“T30” (time needed by the signal to decrease by 30 dB from

its maximum level). In order to predict dead spot occur-

rences, Pat�e et al. (2014) proposed a sound synthesis model

for the computation of the T30 that we reuse here.

The synthetic string signal is computed for G3 string

from fret 0 (nut) to fret 16 every two frets (in order to corre-

spond to the points of vibratory measurement) as a sum of

quasi-harmonic damped sinusoids,

sðtÞ ¼
X sinð2pfntÞ

n
e�2pfnnnt; (6)

where [see Eq. (22) in Pat�e et al. (2014)]:

• the amplitude of the fundamental component is set to 1

and the amplitude of rank-n partial is 1=n;
• string modal dampings nn are the sum of isolated string

dampings n0;n [measured in Pat�e et al. (2014), e.g., Fig. 5]

and additional damping due to the structure nstruct;n

¼ Re½Y�ðc2qL=2pLfnÞ, where Y is the driving-point admit-

tance (defined below), where c is the wave velocity in the

string, L is the vibrating length (changing for each fret), qL

is the string’s mass per unit length [see Eq. (20) in Pat�e
et al. (2014)];

• the frequency of rank-n partial fn equals ðnc=2LÞ½1
þðn2p2EI=2L2TÞ þ ffiffiffiffiffiffiffiffi

qLT
p

=np
� �

Im½Y��, that is a stiff string

model connected to a mechanical admittance, E is the

Young’s modulus of the string’s material, I is the string’s

second moment of area, and T is the string tension [see

Eq. (19) in Pat�e et al. (2014)];
• Y is the driving-point admittance at the string/structure

contact point, where both velocity and force are mea-

sured at the same point. In practice here, this quantity is

synthesized based on a modal fit of measurements done

in free-free condition on the electric guitar structure in

which modal dampings are replaced by the modal damp-

ings measured in Sec. IV B 2 for sitting and standing

musicians; and
• the upper limit of the summation is 800 Hz, which is close

to the upper limit of the magnetic pickup [for the present

pickup 1000 Hz, see Pat�e et al. (2014)], and which roughly

FIG. 6. (Color online) Frequency deviation identified by the OMA. For each mode, D Freq. is the frequency deviation, in percentage, from the modal fre-

quency identified by the classical method (see Fig. 3). The results for a standing player are plotted in black and for a sitting player in red whereas the free-free

configuration is plotted in blue. Different markers are used for the identification results on each plucked string: A2-string with 3, D3-string with r, G3-string

with D, B3-string �. Dashed lines represent the mesh at rest position, black dots connected by solid lines represent the deformation corresponding to the modal

shape on the xz-plane.
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corresponds to where modal overlap starts to hinder cor-

rect identification of modal parameters.

For each of these 9 synthetic signals1(frets 0 to 16 by

steps of 2), the energy decay curve (EDC) is computed using

the backwards integration method (Schroeder, 1965), then

the T30s are computed from a linear regression on the

EDCs. T30 values are shown in Fig. 8.

T30 ranges from 3 to 8 s for free-free configuration,

which is in agreement with results obtained for a similar gui-

tar in Pat�e et al. (2014). A dead spot appears at fret 12 (lower

T30 value), which is due to a coupling between structural

mode 6 at around 373.81 Hz and fundamental frequency of

note G4 at 392.00 Hz (see Table I). In general, T30 for sit-

ting and standing musicians is higher than for free-free con-

figuration. This shows that the sound of the electric guitar

may depend on the presence of a musician. However, differ-

ences between musicians’ standing and sitting positions are

very small, suggesting that the position of the musician has

very little influence on the sound. When the electric guitar is

held by a musician, the structure is damped and the conduc-

tance magnitude is lowered, reducing the influence of the

coupling: different positions might well reduce the coupling

by the same amount.

VI. CONCLUSION

In this article, we presented an original work studying

the influence of the guitarist on the dynamic behavior of the

electric guitar structure and, by extension, on the sound of

the instrument. Modal parameters, frequency, and damping

were derived from accelerometer measurements of the struc-

ture when the player plays or simulates to play in different

configurations.

As expected, the player damps the structure. But, in

detail, with his or her left-hand, this additional damping

FIG. 7. (Color online) Modal damping identified by the OMA. The results for a standing player are plotted in black and for a sitting player in red whereas the free-

free configuration is plotted in blue. Different markers are used for the identification results on each plucked string: A2-string with 3, D3-string with r, G3-string

with D, B3-string �. Dashed lines represent the mesh at rest position, black dots connected by solid lines represent the deformation corresponding to the modal shape

on the xz-plane.

FIG. 8. T30 for each measured fret along string G3. Circles, downwards,

and upwards pointing triangles indicate T30 values computed from the syn-

thesized signal for the electric guitar in free-free condition, held by a sitting

musician, held by a standing musician, respectively.
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evolves differently along the neck (i.e., at different positions

on the modal shape). When the player is standing, the strap,

holding the electric guitar, applies a constraint that brings an

additional stiffness, effective for particular modes, to the

structure. These electric guitar dynamic modifications may

have some consequences for the sound of the instrument. By

using a previously developed model, the decay time of the

sound, which is a relevant sound indicator for the electric

guitar, is higher in playing configuration than in free-free

configuration, but independent of the guitarist’s position. All

these results were obtained by using a specific modal analy-

sis method that is accurate and usable in playing configura-

tion. Although less accurate, a classical modal analysis could

be used with a player simulating a playing configuration, in

order to estimate with a quite great precision the player’s

influence on the dynamic behavior of the musical instrument.

The OMA approach, for its part, brings subtle variations

associated with player-structure interaction, for particular

mode and fret combinations.

The influence of the player can now be integrated in

physically-based sound synthesis algorithms or directly in

instruments using active modal control by modifying modal

damping or/and modal stiffness. The method developed here

can be generalized to other musical instruments, such as,

e.g., the classical guitar or instruments of the string quartet,

or other kinds of structures handled by humans such as sport

equipment where it is essential to have a knowledge of the

dynamic behavior of the object (tennis racket, baseball bat,

etc.) when it is held thus modified by the user, so as to quan-

tify the vibration to which the user is exposed.
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